Well posedness under Levi conditions for a degenerate second order Cauchy problem
Rendiconti del Seminario Matematico della Università di Padova (2007)
- Volume: 117, page 113-126
- ISSN: 0041-8994
Access Full Article
topHow to cite
topAscanelli, Alessia. "Well posedness under Levi conditions for a degenerate second order Cauchy problem." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 113-126. <http://eudml.org/doc/108704>.
@article{Ascanelli2007,
author = {Ascanelli, Alessia},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {blow-up; -well posedness; Gevrey-well posedness},
language = {eng},
pages = {113-126},
publisher = {Seminario Matematico of the University of Padua},
title = {Well posedness under Levi conditions for a degenerate second order Cauchy problem},
url = {http://eudml.org/doc/108704},
volume = {117},
year = {2007},
}
TY - JOUR
AU - Ascanelli, Alessia
TI - Well posedness under Levi conditions for a degenerate second order Cauchy problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 113
EP - 126
LA - eng
KW - blow-up; -well posedness; Gevrey-well posedness
UR - http://eudml.org/doc/108704
ER -
References
top- [1] A. ASCANELLI - M. CICOGNANI, Energy estimate and Fundamental Solution for Degenerate Hyperbolic Cauchy problems. J. Differential Equations, 217 (2005), pp. 305-340. Zbl1087.35066MR2168825
- [2] A. ASCANELLI - M. CICOGNANI, Well posedness of the Cauchy problem for some degenerate hyperbolic operators. Pseudo-Differential Operators and Related Topics, Series: Operator Theory: Advances and Applications, Vol. 164, Editors: P. Boggiatto, L. Rodino, J. Toft, M.-W. Wong, Birkhuser Verlag Basel/Switzerland (2006), pp. 23-41. Zbl1101.35058MR2243964
- [3] M. D. BRONSÏTEǏN, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Trudy Moskov. Mat. Obshch. 41 (1980), pp. 83-99. Zbl0468.35062MR611140
- [4] M. CICOGNANI, The Cauchy problem for strictly hyperbolic operators with non-absolutely continuous coefficients. Tsukuba J. Math. 27 (2003), pp. 1-12. Zbl1041.35049MR1999231
- [5] M. CICOGNANI, Coefficients with unbounded derivatives in hyperbolic equations. Math. Nachr. 277 (2004), pp. 1-16. Zbl1060.35071MR2100045
- [6] F. COLOMBINI - E. DE GIORGI - S. SPAGNOLO, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Sc. Norm. Sup. Pisa 6 (1979), pp. 511-559. Zbl0417.35049MR553796
- [7] F. COLOMBINI - D. DEL SANTO - T. KINOSHITA, Well posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (2002), pp. 327-358. Zbl1098.35094MR1991143
- [8] F. COLOMBINI - D. DEL SANTO - M. REISSIG, On the optimal regularity coefficients in hyperbolic Cauchy problem, Bull. Sci. Math. 127 (2003), pp. 328-347. Zbl1037.35038MR1988632
- [9] F. COLOMBINI - H. ISHIDA - N. ORRU, On the Cauchy problem for finitely degenerate hyperbolic equations of second order. Ark. Mat. 38 (2000), pp. 223-230. Zbl1073.35145MR1785400
- [10] F. COLOMBINI - E. JANNELLI - S. SPAGNOLO, Well posedness in Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), pp. 291-312. Zbl0543.35056MR728438
- [11] F. COLOMBINI - T. NISHITANI, On finitely degenerate hyperbolic operators of second order. Osaka J. Math. 41, 4 (2004) pp. 933-947. Zbl1068.35078MR2116346
- [12] V. JA IVRIǏ, Conditions for correctness in Gevrey classes of the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. (Russian) Sibirsk. Mat. ZÏ. 17 (1976), pp. 1256-1270. Zbl0352.35060MR454368
- [13] K. KAJITANI, Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes. J. Math. Kyoto Univ. 23-3 (1983), pp. 599-616. Zbl0544.35063MR721386
- [14] A. KUBO - M. REISSIG, Construction of parametrix for hyperbolic equations with fast oscillations in non-Lipschitz coefficients. Comm. Partial Differential Equations 28 (2003), pp. 1471-1502. Zbl1036.35118MR1998944
- [15] S. MIZOHATA, On the Cauchy problem. Notes and Reports in Mathematics in Science and Engineering, 3. Academic Press, Inc., Orlando, FL; Science Press, Beijing, 1985. Zbl0616.35002MR860041
- [16] T. NISHITANI, The Cauchy problem for weakly hyperbolic equations of second order. Comm. Partial Differential Equations, 5 (1980), pp. 1273-1296. Zbl0497.35053MR593968
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.