On the dimension of an irrigable measure
Giuseppe Devillanova; Sergio Solimini
Rendiconti del Seminario Matematico della Università di Padova (2007)
- Volume: 117, page 1-49
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDevillanova, Giuseppe, and Solimini, Sergio. "On the dimension of an irrigable measure." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 1-49. <http://eudml.org/doc/108712>.
@article{Devillanova2007,
author = {Devillanova, Giuseppe, Solimini, Sergio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {1-49},
publisher = {Seminario Matematico of the University of Padua},
title = {On the dimension of an irrigable measure},
url = {http://eudml.org/doc/108712},
volume = {117},
year = {2007},
}
TY - JOUR
AU - Devillanova, Giuseppe
AU - Solimini, Sergio
TI - On the dimension of an irrigable measure
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 1
EP - 49
LA - eng
UR - http://eudml.org/doc/108712
ER -
References
top- [1] L. AMBROSIO, Lecture Notes on Optimal Transport Problems, Scuola Normale Superiore, Pisa, 2000. Zbl1047.35001MR2011032
- [2] V. CASELLES - J.M. MOREL, Irrigation, Proc. of the Int. Workshop on variational methods for discontinuous structures, with applications to image segmentation and continuum mechanics. Edited by Gianni Dal Maso and Franco Tomarelli, July 4-6, Villa Erba, Cernobbio (Como), Italy, 2001. Zbl1046.76038MR2197839
- [3] G. DEVILLANOVA - S. SOLIMINI, Elementary properties of optimal irrigation patterns, Calculus of Variations, to appear. Zbl1111.35093MR2290327
- [4] F. MADDALENA - J.M. MOREL - S. SOLIMINI, A variational model of irrigation patterns Interfaces and Free Boundaries 5 (2003), pp. 391-415 Zbl1057.35076MR2031464
- [5] L.C. EVANS, Partial Differential Equations and Monge-Kantorovich Mass Transfer, Current Developments in Mathematics, Int. Press, Boston, MA, 1999. Zbl0954.35011MR1698853
- [6] L.C. EVANS - R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992. Zbl0804.28001MR1158660
- [7] L. KANTOROVICH, On the transfer of masses, Dokl. Acad. Nauk. USSR, 37 (1942), pp. 7-8.
- [8] P. MATTILA, Geometry of Sets and Measures in Euclidean Spaces Fractals and rectificability (1995), Gambridge University Press. Zbl0819.28004MR1333890
- [9] G. MONGE, Mémoire sur la théorie des déblais et de remblais, Historie de l'Académie Royale des Sciences de Paris (1781), pp. 666-704.
- [10] Q. XIA, Optimal paths related to transport problems, Commun. Contemp. Math 5, (2003), pp. 251-279. Zbl1032.90003MR1966259
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.