Galois embedding of algebraic variety and its application to abelian surface

Hisao Yoshihara

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 117, page 69-85
  • ISSN: 0041-8994

How to cite

top

Yoshihara, Hisao. "Galois embedding of algebraic variety and its application to abelian surface." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 69-85. <http://eudml.org/doc/108716>.

@article{Yoshihara2007,
author = {Yoshihara, Hisao},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {very ample divisors; complete linear system; projection in projective space},
language = {eng},
pages = {69-85},
publisher = {Seminario Matematico of the University of Padua},
title = {Galois embedding of algebraic variety and its application to abelian surface},
url = {http://eudml.org/doc/108716},
volume = {117},
year = {2007},
}

TY - JOUR
AU - Yoshihara, Hisao
TI - Galois embedding of algebraic variety and its application to abelian surface
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 69
EP - 85
LA - eng
KW - very ample divisors; complete linear system; projection in projective space
UR - http://eudml.org/doc/108716
ER -

References

top
  1. [1] M. C. BELTRAMETTI - A. J. SOMMESE, Zero cycles - k-th order embeddings of smooth projective surfaces, in Problems in the theory of surfaces - their classification, Cortona, Italy, 1988, ed. by F. Catanese - C. Ciliberto, Sympos. Math., 32 (1992), pp. 33-48. Zbl0827.14029MR1273371
  2. [2] C. DUYAGUIT - H. YOSHIHARA, Galois lines for normal elliptic space curves, Algebra Colloquium, 12 (2005), pp. 205-212. Zbl1076.14036MR2127245
  3. [3] P. GRIFFITHS - J. HARRIS, Principles of Algebraic Geometry, Pure - Applied Mathematics, A Wiley-Interscience Publication, New York, 1978. Zbl0408.14001MR507725
  4. [4] J. HARRIS, Galois groups of enumerative problems, Duke Math. J., 46 (1979), pp. 685-724. Zbl0433.14040MR552521
  5. [5] J. KANEKO - S. TOKUNAGA - M. YOSHIDA, Complex crystallographic groups II, J. Math. Soc. Japan 34 (1982), pp. 595-605. Zbl0488.20039MR669270
  6. [6] H. LANGE - CH. BIRKENHAKE, Complex Abelian Varieties, Grundlehren der mathematischen Wissenschaften 302, Springer-Verlag. Zbl0779.14012MR2062673
  7. [7] M. NAMBA, Branched coverings - algebraic functions, Pitman Research Notes in Mathematics Series 161. Zbl0706.14017MR933557
  8. [8] G.P. PIROLA - E. SCHLESINGER, Monodromy of projective curves, J. Algebraic Geometry, 14 (2005), pp. 623-642. Zbl1084.14011MR2147355
  9. [9] I. REIDER, Vector bundles of rank 2 - linear systems on algebraic surfaces, Ann. of Math., 127 (1988), pp. 309-316. Zbl0663.14010MR932299
  10. [10] T. SHIODA - N. MITANI, Singular abelian surfaces - binary quadratic forms, Lecture Note in Mathematics, Springer-Verlarg 412 (1974), pp. 259-287. Zbl0302.14011MR382289
  11. [11] S. TOKUNAGA - M. YOSHIDA, Complex crystallographic groups I, J. Math. Soc. Japan, 34 (1982), pp. 581-593. Zbl0488.20038MR669269
  12. [12] H. YOSHIHARA, Quotients of abelian surface, Publ. RIMS, Kyoto Univ., 31 (1995), pp. 135-143. Zbl0852.14016MR1317527
  13. [13] H. YOSHIHARA, Function field theory of plane curves by dual curves, J. Algebra, 239 (2001), pp. 340-355. Zbl1064.14023MR1827887
  14. [14] H. YOSHIHARA, Galois points on quartic surfaces, J. Math. Soc. Japan, 53 (2001), pp. 731-743. Zbl1067.14510MR1828978
  15. [15] H. YOSHIHARA, Galois points for smooth hypersurfaces, J. Algebra, 264 (2003), pp. 520-534. Zbl1048.14025MR1981419
  16. [16] H. YOSHIHARA, Families of Galois closure curves for plane quartic curves, J. Math. Kyoto Univ., 43 (2003), pp. 651-659. Zbl1063.14035MR2028672
  17. [17] H. YOSHIHARA, Galois lines for space curves, to appear in Algebra Colloquium. Zbl1095.14030MR2233104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.