Traverso’s Isogeny Conjecture for p -Divisible Groups

Marc-Hubert Nicole; Adrian Vasiu

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 73-83
  • ISSN: 0041-8994

How to cite

top

Nicole, Marc-Hubert, and Vasiu, Adrian. "Traverso’s Isogeny Conjecture for $p$-Divisible Groups." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 73-83. <http://eudml.org/doc/108730>.

@article{Nicole2007,
author = {Nicole, Marc-Hubert, Vasiu, Adrian},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {73-83},
publisher = {Seminario Matematico of the University of Padua},
title = {Traverso’s Isogeny Conjecture for $p$-Divisible Groups},
url = {http://eudml.org/doc/108730},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Nicole, Marc-Hubert
AU - Vasiu, Adrian
TI - Traverso’s Isogeny Conjecture for $p$-Divisible Groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 73
EP - 83
LA - eng
UR - http://eudml.org/doc/108730
ER -

References

top
  1. [dJ] J. DE JONG, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math., Vol. 82 (1995), pp. 5-96. Zbl0864.14009MR1383213
  2. [dJO] J. DE JONG - F. OORT, Purity of the stratification by Newton polygons, J. of Amer. Math. Soc., 13, no. 1 (2000), pp. 209-241. Zbl0954.14007MR1703336
  3. [De] M. DEMAZURE, Lectures on p-divisible groups, Lecture Notes in Math., Vol. 302, Springer-Verlag, 1972. Zbl0247.14010MR344261
  4. [Di] J. DIEUDONNÉ, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractérisque p &gt; 0 (VII), Math. Annalen, 134 (1957), pp. 114-133. Zbl0086.02605MR98146
  5. [Il] L. ILLUSIE, Déformations des groupes de Barsotti-Tate (d'après A. Grothendieck), Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84), pp. 151-198, J. Astérisque, 127, Soc. Math. de France, Paris, 1985. MR801922
  6. [Ma] Y. I. MANIN, The theory of formal commutative groups in finite characteristic, Russian Math. Surv., 18, no. 6 (1963), pp. 1-83. Zbl0128.15603
  7. [NV] M.-H. NICOLE - A. VASIU, Minimal truncations of supersingular p-divisible groups, manuscript, June 2006 (see math.NT/0606777). MR2375706
  8. [Oo1] F. OORT, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math. (2) 152, no. 1 (2000), pp. 183-206. Zbl0991.14016MR1792294
  9. [Oo2] F. OORT, Newton polygon strata in the moduli of abelian varieties, Moduli of abelian varieties (Texel Island, 1999), pp. 417-440, Progr. Math., 195, Birkhäuser, Basel, 2001. Zbl1086.14037MR1827028
  10. [Oo3] F. OORT, Foliations in moduli spaces of abelian varieties, J. of Amer. Math. Soc., 17, no. 2 (2004), pp. 267-296. Zbl1041.14018MR2051612
  11. [Oo4] F. OORT, Minimal p-divisible groups, Ann. of Math. (2) 161, no. 2 (2005), pp. 1021-1036. Zbl1081.14065MR2153405
  12. [Tr1] C. TRAVERSO, Sulla classificazione dei gruppi analitici di caratteristica positiva, Ann. Scuola Norm. Sup. Pisa, 23, no. 3 (1969), pp. 481-507. Zbl0214.48301MR260757
  13. [Tr2] C. TRAVERSO, p-divisible groups over fields, Symposia Mathematica XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 45-65, Academic Press, London, 1973. Zbl0293.14011MR344262
  14. [Tr3] C. TRAVERSO, Specializations of Barsotti-Tate groups, Symposia Mathematica XXIV (Sympos., INDAM, Rome, 1979), pp. 1-21, Acad. Press, London-New York, 1981. Zbl0466.14016MR619238
  15. [Va1] A. VASIU, Crystalline Boundedness Principle, Ann. Sci. École Norm. Sup., 39, no. 2 (2006), pp. 245-300. Zbl1143.14037MR2245533
  16. [Va2] A. VASIU, Reconstructing p-divisible groups from their truncations of small level, manuscript, April 2006 (see math.NT/0607268). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.