Crystalline boundedness principle

Adrian Vasiu

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 2, page 245-300
  • ISSN: 0012-9593

How to cite

top

Vasiu, Adrian. "Crystalline boundedness principle." Annales scientifiques de l'École Normale Supérieure 39.2 (2006): 245-300. <http://eudml.org/doc/82685>.

@article{Vasiu2006,
author = {Vasiu, Adrian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-divisible groups; Dieudonné-modules},
language = {eng},
number = {2},
pages = {245-300},
publisher = {Elsevier},
title = {Crystalline boundedness principle},
url = {http://eudml.org/doc/82685},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Vasiu, Adrian
TI - Crystalline boundedness principle
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 2
SP - 245
EP - 300
LA - eng
KW - -divisible groups; Dieudonné-modules
UR - http://eudml.org/doc/82685
ER -

References

top
  1. [1] Borel A., Linear Algebraic Groups, Graduate Texts in Math., vol. 126, Springer, Berlin, 1991. Zbl0726.20030MR1102012
  2. [2] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Ergeb. Math. Grenzgeb. (3), vol. 21, Springer, Berlin, 1990. Zbl0705.14001MR1045822
  3. [3] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of Finite Groups, Oxford University Press, Eynsham, 1985, xxxiv+252 pp. Zbl0568.20001MR827219
  4. [4] Cremona J.E., Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge, 1992. Zbl0758.14042MR1201151
  5. [5] Demazure M., Lectures on p-Divisible Groups, Lecture Notes in Math., vol. 302, Springer, Berlin, 1972. Zbl0247.14010MR344261
  6. [6] Demazure M., Grothendieck A. et al. , Schémas en groupes, vols. I–III, Lecture Notes in Math., vols. 151–153, Springer, Berlin, 1970. Zbl0207.51401MR274458
  7. [7] Dieudonné J., Groupes de Lie et hyperalgèbres de Lie sur un corps de caractérisque p g t ; 0 (IV), Amer. J. Math.77 (1955) 429-452. Zbl0064.25602
  8. [8] de Jong J., Finite locally free group schemes in characteristic p and Dieudonné modules, Invent. Math.114 (1) (1993) 89-137. Zbl0812.14030MR1235021
  9. [9] de Jong J., Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math.82 (1995) 5-96. Zbl0864.14009MR1383213
  10. [10] de Jong J., Oort F., Purity of the stratification by Newton polygons, J. Amer. Math. Soc.13 (1) (2000) 209-241. Zbl0954.14007MR1703336
  11. [11] Faltings G., Crystalline cohomology and p-adic Galois representations, in: Algebraic Analysis, Geometry, and Number Theory, Baltimore, MD, 1988, Johns Hopkins University Press, Baltimore, MD, 1989, pp. 25-80. Zbl0805.14008MR1463696
  12. [12] Faltings G., Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc.12 (1) (1999) 117-144. Zbl0914.14009MR1618483
  13. [13] Faltings G., Chai C.-L., Degeneration of Abelian Varieties, Ergeb. Math. Grenzgeb. (3), vol. 22, Springer, Berlin, 1990. Zbl0744.14031MR1083353
  14. [14] Fontaine J.-M., Groupes p-divisibles sur les corps locaux, J. Astérisque, vol. 47/48, Soc. Math. de France, Paris, 1977. Zbl0377.14009MR498610
  15. [15] Fontaine J.-M., Laffaille G., Construction de représentations p-adiques, Ann. Sci. École Norm. Sup.15 (4) (1982) 547-608. Zbl0579.14037MR707328
  16. [16] Grothendieck A., Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphisms, Inst. Hautes Études Sci. Publ. Math., vol. 11, 1961. Zbl0118.36206MR217084
  17. [17] Grothendieck A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Première partie, Inst. Hautes Études Sci. Publ. Math., vol. 11, 1963. Zbl0122.16102MR163911
  18. [18] Grothendieck A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schéma, Inst. Hautes Études Sci. Publ. Math., vol. 20, 1964, vol. 24, 1965, vol. 28, 1996, and vol. 32, 1967. Zbl0136.15901
  19. [19] Grothendieck A., Groupes de Barsotti–Tate et cristaux de Dieudonné, Sém. Math. Sup., vol. 45, (1970), Les presses de l'Université de Montréal, Montréal, Quebec, 1974. Zbl0331.14021MR417192
  20. [20] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978. Zbl0451.53038MR514561
  21. [21] Illusie L., Déformations des groupes de Barsotti–Tate (d'après A. Grothendieck), in: Seminar on Arithmetic Bundles: The Mordell Conjecture, Paris, 1983/84, J. Astérisque, vol. 127, Soc. Math. de France, Paris, 1985, pp. 151-198. MR801922
  22. [22] Katz N., Slope filtration of F-crystals, in: Journées de Géométrie Algébrique de Rennes, Rennes, 1978, vol. I, J. Astérisque, vol. 63, Soc. Math. de France, Paris, 1979, pp. 113-163. Zbl0426.14007MR563463
  23. [23] Katz N., Serre–Tate local moduli, in: Algebraic Surfaces Orsay, 1976–1978, Lecture Notes in Math., vol. 868, Springer, Berlin, 1981, pp. 138-202. Zbl0477.14007MR638600
  24. [24] Kottwitz R.E., Isocrystals with additional structure, Comp. Math.56 (2) (1985) 201-220. Zbl0597.20038MR809866
  25. [25] Kottwitz R.E., Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (2) (1992) 373-444. Zbl0796.14014MR1124982
  26. [26] Kraft, H., Kommutative algebraische p-Gruppen (mit Anwendungen auf p-divisible Gruppen und abelsche Varietäten), Manuscript, Univ. Bonn, 1975, 86 p. 
  27. [27] Li K.-Z., Oort F., Moduli of Supersingular Abelian Varieties, Lecture Notes in Math., vol. 1680, Springer, Berlin, 1998. Zbl0920.14021MR1611305
  28. [28] Manin J.I., The theory of formal commutative groups in finite characteristic, Russian Math. Surveys18 (6) (1963) 1-83. Zbl0128.15603MR157972
  29. [29] Matsumura H., Commutative Algebra, Benjamin/Cummings, Reading, MA, 1980. Zbl0441.13001MR575344
  30. [30] Messing W., The Crystals Associated to Barsotti–Tate Groups, with Applications to Abelian Schemes, Lecture Notes in Math., vol. 264, Springer, Berlin, 1972. Zbl0243.14013MR347836
  31. [31] Milne J.S., The points on a Shimura variety modulo a prime of good reduction, in: The Zeta Functions of Picard Modular Surfaces, Univ. Montréal Press, Montréal, Quebec, 1992, pp. 153-255. Zbl0821.14016MR1155229
  32. [32] Mumford D., Abelian Varieties, Tata Inst. of Fund. Research Studies in Math., vol. 5, Tata Institute of Fundamental Research, Oxford University Press, Bombay, London, 1970, viii+242 pp. (Reprinted 1988). Zbl0223.14022MR282985
  33. [33] Mumford D., Fogarty J., Kirwan F., Geometric Invariant Theory, Ergeb. Math. Grenzgeb. (2), vol. 34, Springer, Berlin, 1994. Zbl0797.14004MR1304906
  34. [34] Oort F., A stratification of a moduli space of abelian varieties, in: Moduli of Abelian Varieties, Texel Island, 1999, Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 345-416. Zbl1052.14047MR1827027
  35. [35] Oort F., Newton polygon strata in the moduli space of abelian varieties, in: Moduli of Abelian Varieties, Texel Island, 1999, Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 417-440. Zbl1086.14037MR1827028
  36. [36] Oort F., Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc.17 (2) (2004) 267-296. Zbl1041.14018MR2051612
  37. [37] Rapoport M., Richartz M., On the classification and specialization of F-isocrystals with additional structure, Comp. Math.103 (2) (1996) 153-181. Zbl0874.14008MR1411570
  38. [38] Serre J.-P., Galois Cohomology, Springer, Berlin, 1997. Zbl0902.12004MR1466966
  39. [39] Tate J., Classes d'isogénie des variétés sur un corps fini (d'après J. Honda), in: Sém. Bourbaki 1968/69, Exp. 352, Lecture Notes in Math., vol. 179, Springer, Berlin, 1971, pp. 95-110. Zbl0212.25702
  40. [40] Vasiu A., Integral canonical models of Shimura varieties of preabelian type, Asian J. Math.3 (2) (1999) 401-518. Zbl1002.11052MR1796512
  41. [41] Zink T., On the slope filtration, Duke Math. J.109 (1) (2001) 79-95. Zbl1061.14045MR1844205
  42. [42] Wintenberger J.-P., Un scindage de la filtration de Hodge pour certaines varietés algebriques sur les corps locaux, Ann. of Math. (2)119 (3) (1984) 511-548. Zbl0599.14018MR744862

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.