Generalized Derivations with Power Central Values on Multilinear Polynomials on Right Ideals

Nurcan Argaç; Vincenzo De Filippis; H. G. Inceboz

Rendiconti del Seminario Matematico della Università di Padova (2008)

  • Volume: 120, page 59-71
  • ISSN: 0041-8994

How to cite

top

Argaç, Nurcan, De Filippis, Vincenzo, and Inceboz, H. G.. "Generalized Derivations with Power Central Values on Multilinear Polynomials on Right Ideals." Rendiconti del Seminario Matematico della Università di Padova 120 (2008): 59-71. <http://eudml.org/doc/108747>.

@article{Argaç2008,
author = {Argaç, Nurcan, De Filippis, Vincenzo, Inceboz, H. G.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {prime algebras; extended centroids; right Utumi quotient rings; generalized derivations; multilinear polynomials; central valued polynomials},
language = {eng},
pages = {59-71},
publisher = {Seminario Matematico of the University of Padua},
title = {Generalized Derivations with Power Central Values on Multilinear Polynomials on Right Ideals},
url = {http://eudml.org/doc/108747},
volume = {120},
year = {2008},
}

TY - JOUR
AU - Argaç, Nurcan
AU - De Filippis, Vincenzo
AU - Inceboz, H. G.
TI - Generalized Derivations with Power Central Values on Multilinear Polynomials on Right Ideals
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 120
SP - 59
EP - 71
LA - eng
KW - prime algebras; extended centroids; right Utumi quotient rings; generalized derivations; multilinear polynomials; central valued polynomials
UR - http://eudml.org/doc/108747
ER -

References

top
  1. [1] K.I. BEIDAR - W.S. MARTINDALE - V. MIKHALEV, Rings with generalized identities, Pure and Applied Math., Dekker, New York, 1996. Zbl0847.16001MR1368853
  2. [2] C.M. CHANG, Power central values of derivations on multilinear polynomials, Taiwanese J. Math. vol., 2 (2003), pp. 329-338. Zbl1058.16032MR1978020
  3. [3] C.M. CHANG - T.K. LEE, Annihilators of power values of derivations in prime rings, Comm. Algebra, 26 (7) (1998), pp. 2091-2113. Zbl0904.16014MR1626653
  4. [4] C. L. CHUANG, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), pp. 723-728. Zbl0656.16006MR947646
  5. [5] C.L. CHUANG - T.K. LEE, Rings with annihilator conditions on multilinear poynomials, Chinese J. Math., 24 (2) (1996), pp. 177-185. Zbl0855.16029MR1401645
  6. [6] B. FELZENSZWALB, On a result of Levitzki, Canad. Math. Bull., 21 (1978), pp. 241-242. Zbl0395.16029MR491793
  7. [7] A. GIAMBRUNO - I.N. HERSTEIN, Derivations with nilpotent values, Rend. Circ. Mat. Palermo, 30 (1981), pp. 199-206. Zbl0482.16030MR651152
  8. [8] I.N. HERSTEIN, Derivations of prime rings having power central values, Algebraist's Homage, Contemp. Math. 13, AMS, Provident, Rhode Island (1982), pp. 163-171. Zbl0503.16002MR685947
  9. [9] I.N. HERSTEIN, Topics in Ring Theory, Univ. Chicago Press, Chicago, Illinois, 1969. Zbl0232.16001MR271135
  10. [10] B. HVALA, Generalized derivations in rings, Comm. Algebra, 26 (4) (1998), pp. 1147-1166. Zbl0899.16018MR1612208
  11. [11] N. JACOBSON, Structure of Rings, American Mathematical Society Colloquium Publications vol. 37, American Mathematical Society, Rhode Island, 1964. Zbl0073.02002
  12. [12] V.K. KHARCHENKO, Differential identities of prime rings, Algebra and Logic, 17 (1978), pp. 155-168. Zbl0423.16011MR541758
  13. [13] T.K. LEE, Generalized derivations of left faithful rings, Comm. Algebra, 27 (8) (1999), pp. 4057-4073. Zbl0946.16026MR1700189
  14. [14] T.K. LEE, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc., 347 (1995), pp. 3159-3165. Zbl0845.16016MR1286000
  15. [15] T.K. LEE, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq., 3 (1996), pp. 19-24. Zbl0845.16017MR1374157
  16. [16] T.K. LEE, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20 (1) (1992), pp. 27-38. Zbl0769.16017MR1166215
  17. [17] T.K. LEE - W.K. SHIUE, Identities with generalized derivations, Comm. Algebra, 29 (10) (2001), pp. 4435-4450. Zbl0992.16018MR1854144
  18. [18] T.K. LEE - T.L. WONG, Derivations centralizing Lie ideals, Bull. Inst. Math. Acad. Sinica, 23 (1995), pp. 1-5. Zbl0827.16025MR1319474
  19. [19] W.S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), pp. 576-584. Zbl0175.03102MR238897
  20. [20] E.C. POSNER, Derivations in prime rings, Proc.Amer. Math. Soc., 8 (1957), pp. 1093-1100. Zbl0082.03003MR95863
  21. [21] Y. WANG, Generalized derivations with power central values on multilinear polynomials, Algebra Colloq., 13 (3) (2006), pp. 405-410. Zbl1096.16015MR2233098
  22. [22] W. WEI, Generalized derivations with nilpotent values on semiprime rings, Acta Math. Sinica, 20 (3) (2004), pp. 453-462. Zbl1064.16036MR2084708
  23. [23] T.L. WONG, Derivations with power central values on multilinear poynomials, Algebra Colloq., 3 (4) (1996), pp. 369-378. Zbl0864.16031MR1422975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.