Generalized Derivations on (Semi-)Prime Rings and Noncommutative Banach Algebras

Feng Wei; Zhankui Xiao

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 122, page 171-190
  • ISSN: 0041-8994

How to cite

top

Wei, Feng, and Xiao, Zhankui. "Generalized Derivations on (Semi-)Prime Rings and Noncommutative Banach Algebras." Rendiconti del Seminario Matematico della Università di Padova 122 (2009): 171-190. <http://eudml.org/doc/108769>.

@article{Wei2009,
author = {Wei, Feng, Xiao, Zhankui},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {semiprime rings; additive maps; generalized derivations; generalized Jordan derivations; prime rings; left multiplications; central identities; Banach algebras},
language = {eng},
pages = {171-190},
publisher = {Seminario Matematico of the University of Padua},
title = {Generalized Derivations on (Semi-)Prime Rings and Noncommutative Banach Algebras},
url = {http://eudml.org/doc/108769},
volume = {122},
year = {2009},
}

TY - JOUR
AU - Wei, Feng
AU - Xiao, Zhankui
TI - Generalized Derivations on (Semi-)Prime Rings and Noncommutative Banach Algebras
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 122
SP - 171
EP - 190
LA - eng
KW - semiprime rings; additive maps; generalized derivations; generalized Jordan derivations; prime rings; left multiplications; central identities; Banach algebras
UR - http://eudml.org/doc/108769
ER -

References

top
  1. [1] E. ALBAS - N. ARGAC, Generalized derivations of prime rings, Algebra Colloq., 11 (2004), pp. 399-410. Zbl1074.16022MR2081197
  2. [2] K. I. BEIDAR, Rings of quotients of semiprime rings, Vestnik Moskov. Univ. Ser I Mat. Meh. (Engl. Transl. Moscow Univ. Math. Bull.), 33 (1978), pp. 36-42. Zbl0403.16003MR516019
  3. [3] M. BRESÏAR, Jordan mappings of semiprime rings, J. Algebra, 127 (1989), pp. 218-228. Zbl0691.16040MR1029414
  4. [4] D. S. BRIDGES - J. BERGEN, On the derivation of xn in a ring, Proc. Amer. Math. Soc., 90 (1984), pp. 25-29. Zbl0528.16021MR722408
  5. [5] L. O. CHUNG - J. LUH, Semiprime rings with nilpotent derivations, Canad. Math. Bull., 24 (1981), pp. 415-421. Zbl0477.16016MR644530
  6. [6] J. CUSACK, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), pp. 321-324. Zbl0327.16020MR399182
  7. [7] V. DE FILIPPIS, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math., 162 (2007), pp. 93-108. Zbl1142.16023MR2365855
  8. [8] V. DE FILIPPIS, Posner's second theorem and an annihilator condition with generalized derivations, Turkish J. Math., 32 (2008), pp. 197-211. Zbl1152.16025MR2423389
  9. [9] V. DE FILIPPIS, Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc., 45 (2008), pp. 621-629. Zbl1168.16020MR2463137
  10. [10] V. DE FILIPPIS - H. G. INCEBOZ, Generalized derivations with power central values on multilinear polynomials on right ideals, Rend. Sem. Mat. Univ. Padova, 120 (2008), pp. 59-71. Zbl1228.16039MR2492650
  11. [11] V. DE FILIPPIS - M. S. TAMMAM EL-SAYIAD, A note on Posner's theorem with generalized derivations on Lie ideals, Rend. Sem. Mat. Univ. Padova, 122 (2009), pp. 55-64. Zbl1183.16035
  12. [12] I. N. HERSTEIN, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), pp. 1104-1110. Zbl0216.07202MR95864
  13. [13] B. E. JOHNSON - A. M. SINCLAIR, Continuity of derivations and a problem of Kaplansky, Amer J. Math., 90 (1968), pp. 1067-1073. Zbl0179.18103MR239419
  14. [14] K. -W. JUN - H. - M. KIM, Derivations on prime rings and Banach algebras, Bull. Korean Math. Soc., 38 (2001), pp. 709-718. Zbl1029.47022MR1865829
  15. [15] C. LANSKI, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), pp. 731-734. Zbl0821.16037MR1132851
  16. [16] T. K. LEE, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20 (1992), pp. 27-38. Zbl0769.16017
  17. [17] M. MATHIEU - V. RUNDE, Derivations mapping into the radical, II, Bull. London Math. Soc., 24 (1992), pp. 485-487. Zbl0733.46023
  18. [18] E. POSNER, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), pp. 1093-1100. Zbl0082.03003
  19. [19] A. M. SINCLAIR, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc., 24 (1970), pp. 209-214. Zbl0175.44001
  20. [20] A. M. SINCLAIR, Automatic Continuity of Linear Operators, London Mathematical Society Lecture Note Series, V. 21, Cambridge University Press (Cambridge, 1976). Zbl0313.47029MR487371
  21. [21] I. M. SINGER - J. WERMER, Derivations on commutative normed algebras, Math. Ann., 129 (1955), pp. 260-264. Zbl0067.35101MR70061
  22. [22] M. P. THOMAS, The image of a derivation is contained in the radical, Ann. Math., 128 (1988), pp. 435-460. Zbl0681.47016MR970607
  23. [23] M. P. THOMAS, Primitive ideals and derivations on noncommutative Banach algebras, Pacific. J. Math., 159 (1993), pp. 139-152. Zbl0739.47014MR1211389
  24. [24] J. VUKMAN, Identities with derivations on rings and Banach algebras, Glasnik Matematicki, 40 (2005), pp. 189-199. Zbl1093.16033MR2189469
  25. [25] J. VUKMAN - I. KOSI-ULBL, A note on derivations in semiprime rings, Int. J. Math. Math. Sci., 20 (2005), pp. 3347-3350. Zbl1095.16018MR2208058
  26. [26] F. WEI, Generalized derivations with nilpotent values on semiprime rings, Acta Math. Sinica, 20 (2004), pp. 453-462. Zbl1064.16036MR2084708
  27. [27] F. WEI - Z. -K. XIAO, Generalized Jordan (triple-)derivations and pairs of Jordan derivations on semiprime rings, Demonstratio Math., in press. Zbl1139.16023
  28. [28] F. WEI - Z. -K. XIAO, Pair of (Generalized-) Derivations on Rings and Banach Algebras, Bull. Korean Math. Soc., 46 (2009), pp. 857-866. Zbl1185.16046MR2554280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.