A note on primes between consecutive powers

Danilo Bazzanella

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 121, page 223-231
  • ISSN: 0041-8994

How to cite

top

Bazzanella, Danilo. "A note on primes between consecutive powers." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 223-231. <http://eudml.org/doc/108758>.

@article{Bazzanella2009,
author = {Bazzanella, Danilo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {distribution of primes; density hypothesis},
language = {eng},
pages = {223-231},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on primes between consecutive powers},
url = {http://eudml.org/doc/108758},
volume = {121},
year = {2009},
}

TY - JOUR
AU - Bazzanella, Danilo
TI - A note on primes between consecutive powers
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 223
EP - 231
LA - eng
KW - distribution of primes; density hypothesis
UR - http://eudml.org/doc/108758
ER -

References

top
  1. [1] D. BAZZANELLA, The exceptional set for the distribution of primes between consecutive squares, Preprint 2008. Zbl1240.11100
  2. [2] D. BAZZANELLA, The exceptional set for the distribution of primes between consecutive powers, Acta Math. Hungar, 116 (3) (2007), pp. 197-207. Zbl1240.11100MR2322949
  3. [3] D. BAZZANELLA, Primes between consecutive square, Arch. Math., 75 (2000), pp. 29-34. Zbl1047.11087MR1764888
  4. [4] D. BAZZANELLA - A. PERELLI, The exceptional set for the number of primes in short intervals, J. Number Theory, 80 (2000), pp. 109-124 . Zbl0972.11087MR1735650
  5. [5] H. DAVENPORT, Multiplicative Number Theory, volume GTM 74 (Springer - Verlag, 1980), second edition. Zbl0453.10002MR606931
  6. [6] D. R. HEATH-BROWN, The difference between consecutive primes II, J. London Math. Soc., 19 (2) (1979), pp. 207-220. Zbl0394.10021MR533319
  7. [7] D. R. HEATH-BROWN, The number of primes in a short interval. J. Reine Angew. Math., 389 (1988), pp. 22-63. Zbl0646.10032MR953665
  8. [8] M. N. HUXLEY, On the difference between consecutive primes, Invent. Math., 15 (1972), pp. 164-170. Zbl0241.10026MR292774
  9. [9] A. E. INGHAM, On the difference between consecutive primes, Quart. J. of Math. (Oxford), 8 (1937), pp. 255-266. Zbl0017.38904JFM63.0903.04
  10. [10] A. IVIĆ, The Riemann Zeta-Function , John Wiley and Sons, New York, 1985. Zbl0556.10026MR792089

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.