A note on primes between consecutive powers
Rendiconti del Seminario Matematico della Università di Padova (2009)
- Volume: 121, page 223-231
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBazzanella, Danilo. "A note on primes between consecutive powers." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 223-231. <http://eudml.org/doc/108758>.
@article{Bazzanella2009,
author = {Bazzanella, Danilo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {distribution of primes; density hypothesis},
language = {eng},
pages = {223-231},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on primes between consecutive powers},
url = {http://eudml.org/doc/108758},
volume = {121},
year = {2009},
}
TY - JOUR
AU - Bazzanella, Danilo
TI - A note on primes between consecutive powers
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 223
EP - 231
LA - eng
KW - distribution of primes; density hypothesis
UR - http://eudml.org/doc/108758
ER -
References
top- [1] D. BAZZANELLA, The exceptional set for the distribution of primes between consecutive squares, Preprint 2008. Zbl1240.11100
- [2] D. BAZZANELLA, The exceptional set for the distribution of primes between consecutive powers, Acta Math. Hungar, 116 (3) (2007), pp. 197-207. Zbl1240.11100MR2322949
- [3] D. BAZZANELLA, Primes between consecutive square, Arch. Math., 75 (2000), pp. 29-34. Zbl1047.11087MR1764888
- [4] D. BAZZANELLA - A. PERELLI, The exceptional set for the number of primes in short intervals, J. Number Theory, 80 (2000), pp. 109-124 . Zbl0972.11087MR1735650
- [5] H. DAVENPORT, Multiplicative Number Theory, volume GTM 74 (Springer - Verlag, 1980), second edition. Zbl0453.10002MR606931
- [6] D. R. HEATH-BROWN, The difference between consecutive primes II, J. London Math. Soc., 19 (2) (1979), pp. 207-220. Zbl0394.10021MR533319
- [7] D. R. HEATH-BROWN, The number of primes in a short interval. J. Reine Angew. Math., 389 (1988), pp. 22-63. Zbl0646.10032MR953665
- [8] M. N. HUXLEY, On the difference between consecutive primes, Invent. Math., 15 (1972), pp. 164-170. Zbl0241.10026MR292774
- [9] A. E. INGHAM, On the difference between consecutive primes, Quart. J. of Math. (Oxford), 8 (1937), pp. 255-266. Zbl0017.38904JFM63.0903.04
- [10] A. IVIĆ, The Riemann Zeta-Function , John Wiley and Sons, New York, 1985. Zbl0556.10026MR792089
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.