On the regularity for solutions of the micropolar fluid equations

Elva Ortega-Torres; Marko Rojas-Medar

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 122, page 27-37
  • ISSN: 0041-8994

How to cite

top

Ortega-Torres, Elva, and Rojas-Medar, Marko. "On the regularity for solutions of the micropolar fluid equations." Rendiconti del Seminario Matematico della Università di Padova 122 (2009): 27-37. <http://eudml.org/doc/108774>.

@article{Ortega2009,
author = {Ortega-Torres, Elva, Rojas-Medar, Marko},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {27-37},
publisher = {Seminario Matematico of the University of Padua},
title = {On the regularity for solutions of the micropolar fluid equations},
url = {http://eudml.org/doc/108774},
volume = {122},
year = {2009},
}

TY - JOUR
AU - Ortega-Torres, Elva
AU - Rojas-Medar, Marko
TI - On the regularity for solutions of the micropolar fluid equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 122
SP - 27
EP - 37
LA - eng
UR - http://eudml.org/doc/108774
ER -

References

top
  1. [1] H. BEIRÃO DA VEIGA, A new regularity class for the Navier-Stokes equations in Rn , Chin. Ann. of Math., 16B, 4 (1995), pp. 1-6. Zbl0837.35111
  2. [2] H. BEIRÃO DA VEIGA, Concerning the regularity of the solutions to the NavierStokes equations via the truncation method Part II, In Equations aux dérivées partielles et applications Gauthier-Villars Éd. Sci. Méd. Elsevier (Paris 1998), pp. 127-138. Zbl0927.35077MR1648218
  3. [3] H. BEIRÃO DA VEIGA, A Sufficient condition on the pressure for the regularity of weak Solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), pp. 99-106. Zbl0970.35105MR1765772
  4. [4] H. BEIRÃO DA VEIGA, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), pp. 149-166. Zbl0601.35093MR876996
  5. [5] L. BERSELLI, Sufficient conditions for the regularity of the solutions of the Navier-Stokes Equations, Math. Meth. Appl. Sci., 22 (1999), pp. 1079-1085. Zbl0940.35159MR1706110
  6. [6] D. CHAE- J. LEE, Regularity criterion intermsofpressure for theNavier-Stokes equations,NonlinearAnal.,46,no.5,Ser.A:TheoryMethods(2001),pp.727-735. Zbl1007.35064MR1857154
  7. [7] A. C. ERINGEN, Theory of micropolar fluids, J. Math. Mech., 16 (1966), pp. 1-8. MR204005
  8. [8] Y. GIYA - T. MIYAKAWA, Solutions in Lr to the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal., 89 (1985), pp. 267-281. Zbl0587.35078MR786550
  9. [9] J. G. HEYWOOD - O. D. WALSH, A counter-example concerning the pressure in the Navier-Stokes, as t 3 0‡ , Pacific J. Math., 164 (1994), pp. 351-359. Zbl0808.35101MR1272655
  10. [10] S. KANIEL, A sufficient conditions for smoothness of solutions of NavierStokes equations, Israel J. Math., 6 (1968), pp. 354-358. Zbl0174.15003MR244651
  11. [11] S. KANIEL - M. SHINBROT, Smoothness of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 24 (1967), pp. 302-324. Zbl0152.44902MR214938
  12. [12] O. A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow, Second edition, Gordon and Breach (New York 1969). Zbl0184.52603MR254401
  13. [13] G. LUKASZEWICZ, On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL, Mem. Math., 107 (vol. XIII) (1989), pp. 105-120. Zbl0692.76020MR1041744
  14. [14] G. LUKASZEWICZ, Micropolar fluids: theory and applications, Birkhäuser (Berlin 1998). Zbl0923.76003MR1711268
  15. [15] K. MASUDA, Weak solutions of Navier-Stokes equations, Tohoku Math. J., 36 (1984), pp. 623-646. Zbl0568.35077MR767409
  16. [16] M. O'LERAY, Pressure conditions for the local regularity of solutions of the Navier-Stokes equations, EJDE, 1998 (1998), pp. 1-9. Zbl0912.35123
  17. [17] E. ORTEGA-TORRES - M. A. ROJAS-MEDAR, On the uniqueness and regularity of the weak solutions for magneto-micropolar equations, Rev. Mat. Apl., 17 (1996), pp. 75-90. Zbl0862.76097MR1413483
  18. [18] M. A. ROJAS-MEDAR - J. L. BOLDRINI, Magneto-micropolar fluid motion: existence of weak solution, Rev. Mat. Univ. Complutense de Madrid., Vol. 11, 2 (1998), pp. 443-460. Zbl0918.35114MR1666509
  19. [19] J. SERRIN, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), pp. 187-195. Zbl0106.18302MR136885
  20. [20] H. SOHR, The Navier-Stokes equations, a elementary functional analytic approach, Birkhäuser (Berlin 2001). Zbl0983.35004MR1928881
  21. [21] R. TEMAM, Navier-Stokes equations, theory and numerical analysis, North - Holland (2nd Revised Edition) (Amsterdam 1979). Zbl0426.35003MR603444
  22. [22] W. VON WHALH, Regularity question for the Navier-Stokes equations, in: R. Rautmann ed., Approximations Methods for the Navier-Stokes Problems, Lectures and Notes in Mathematics, 771 (Springer-Verlag, Berlin 1980), pp. 538-542. Zbl0451.35051MR566019
  23. [23] N. YAMAGUCHI, Existence of global solution to the micropolar fluid system in a bounded domain, Math. Method Appl. Sci., 28 (2005), pp. 1507-1526. Zbl1078.35096MR2158216

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.