A Note on Posner s Theorem with Generalized Derivations on Lie Ideals

Vincenzo De Filippis; M. S. Tammam El-Sayiad

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 122, page 55-64
  • ISSN: 0041-8994

How to cite

top

De Filippis, Vincenzo, and Tammam El-Sayiad, M. S.. "A Note on Posner s Theorem with Generalized Derivations on Lie Ideals." Rendiconti del Seminario Matematico della Università di Padova 122 (2009): 55-64. <http://eudml.org/doc/108776>.

@article{DeFilippis2009,
author = {De Filippis, Vincenzo, Tammam El-Sayiad, M. S.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {prime rings; Utumi quotient rings; extended centroids; generalized derivations; Lie ideals; standard identities},
language = {eng},
pages = {55-64},
publisher = {Seminario Matematico of the University of Padua},
title = {A Note on Posner s Theorem with Generalized Derivations on Lie Ideals},
url = {http://eudml.org/doc/108776},
volume = {122},
year = {2009},
}

TY - JOUR
AU - De Filippis, Vincenzo
AU - Tammam El-Sayiad, M. S.
TI - A Note on Posner s Theorem with Generalized Derivations on Lie Ideals
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 122
SP - 55
EP - 64
LA - eng
KW - prime rings; Utumi quotient rings; extended centroids; generalized derivations; Lie ideals; standard identities
UR - http://eudml.org/doc/108776
ER -

References

top
  1. [1] K. I. BEIDAR, Rings with generalized identities, Moscow Univ. Math. Bull., 33, n. 4 (1978), pp. 53-58. Zbl0407.16002
  2. [2] K. I. BEIDAR - W. S. MARTINDALE III - V. MIKHALEV, Rings with generalized identities, Pure and Applied Math. (Dekker, New York 1996). Zbl0847.16001MR1368853
  3. [3] H. CHENG, Some results about derivations of prime rings, J. Math. Res. Expo., 25, n. 4 (2005), pp. 625-633. Zbl1091.16021MR2184235
  4. [4] C. L. CHUANG, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., vol. 103, n. 3 (1988), pp. 723-728. Zbl0656.16006MR947646
  5. [5] O. M. DI VINCENZO, On the n-th centralizer of a Lie ideal, Boll. UMI (7)3-A (1989), pp. 77-85. Zbl0692.16022MR990089
  6. [6] T. S. ERICKSON - W. S. MARTINDALE III - J. M. OSBORN, Prime nonassociative algebras, Pacific J. Math., 60 (1975), pp. 49-63. Zbl0355.17005MR382379
  7. [7] C. FAITH - Y. UTUMI, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14 (1963), pp. 369-371. Zbl0147.28602MR155858
  8. [8] I. N. HERSTEIN, Topics in ring theory, Univ. of Chicago Press, 1969. Zbl0232.16001MR271135
  9. [9] N. JACOBSON, PI-Algebras, Lecture Notes in Math., vol. 441 (Springer Verlag, New York, 1975). Zbl0326.16013MR369421
  10. [10] N. JACOBSON, Structure of rings, Amer. Math. Soc., Providence, RI, 1964. Zbl0073.02002
  11. [11] V. K. KHARCHENKO, Differential identities of prime rings, Algebra and Logic, 17 (1978), pp. 155-168. Zbl0423.16011MR541758
  12. [12] T. K. LEE, Generalized derivations of left faithful rings, Comm. Algebra, 27, n. 8 (1999), pp. 4057-4073. Zbl0946.16026MR1700189
  13. [13] T. K. LEE, Semiprime rings with differential identities, Bull. Inst. Acad. Sinica, 20, n. 1 (1992), pp. 27-38. Zbl0769.16017MR1166215
  14. [14] W. S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), pp. 576-584. Zbl0175.03102MR238897
  15. [15] E. C. POSNER, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1975), pp. 1093-1100. Zbl0082.03003MR95863
  16. [16] T. L. WONG, Derivations with power-central values on multilinear polynomials, Algebra Coll. (4), 3 (1996), pp. 369-378. Zbl0864.16031MR1422975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.