Algebraic properties of a family of Jacobi polynomials

John Cullinan[1]; Farshid Hajir[2]; Elizabeth Sell[3]

  • [1] Department of Mathematics Bard College Annandale-On-Hudson, NY 12504
  • [2] Department of Mathematics University of Massachusetts Amherst MA 01003
  • [3] Department of Mathematics Millersville University P.O. Box 1002 Millersville, PA 17551

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 1, page 97-108
  • ISSN: 1246-7405

Abstract

top
The one-parameter family of polynomials J n ( x , y ) = j = 0 n y + j j x j is a subfamily of the two-parameter family of Jacobi polynomials. We prove that for each n 6 , the polynomial J n ( x , y 0 ) is irreducible over for all but finitely many y 0 . If n is odd, then with the exception of a finite set of y 0 , the Galois group of J n ( x , y 0 ) is S n ; if n is even, then the exceptional set is thin.

How to cite

top

Cullinan, John, Hajir, Farshid, and Sell, Elizabeth. "Algebraic properties of a family of Jacobi polynomials." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 97-108. <http://eudml.org/doc/10878>.

@article{Cullinan2009,
abstract = {The one-parameter family of polynomials $J_\{n\}(x,y) = \sum _\{j=0\}^\{n\} \binom\{y+j\}\{j\}x^\{j\}$ is a subfamily of the two-parameter family of Jacobi polynomials. We prove that for each $n \ge 6$, the polynomial $J_\{n\}(x,y_\{0\})$ is irreducible over $\mathbb\{Q\}$ for all but finitely many $y_\{0\} \in \mathbb\{Q\}$. If $n$ is odd, then with the exception of a finite set of $y_\{0\}$, the Galois group of $J_\{n\}(x,y_\{0\})$ is $S_\{n\}$; if $n$ is even, then the exceptional set is thin.},
affiliation = {Department of Mathematics Bard College Annandale-On-Hudson, NY 12504; Department of Mathematics University of Massachusetts Amherst MA 01003; Department of Mathematics Millersville University P.O. Box 1002 Millersville, PA 17551},
author = {Cullinan, John, Hajir, Farshid, Sell, Elizabeth},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Orthogonal polynomials; Jacobi polynomial; Rational point; Riemann-Hurwitz formula; Specialization; Jacobi polynomials; irreducibility; Galois groups},
language = {eng},
number = {1},
pages = {97-108},
publisher = {Université Bordeaux 1},
title = {Algebraic properties of a family of Jacobi polynomials},
url = {http://eudml.org/doc/10878},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Cullinan, John
AU - Hajir, Farshid
AU - Sell, Elizabeth
TI - Algebraic properties of a family of Jacobi polynomials
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 97
EP - 108
AB - The one-parameter family of polynomials $J_{n}(x,y) = \sum _{j=0}^{n} \binom{y+j}{j}x^{j}$ is a subfamily of the two-parameter family of Jacobi polynomials. We prove that for each $n \ge 6$, the polynomial $J_{n}(x,y_{0})$ is irreducible over $\mathbb{Q}$ for all but finitely many $y_{0} \in \mathbb{Q}$. If $n$ is odd, then with the exception of a finite set of $y_{0}$, the Galois group of $J_{n}(x,y_{0})$ is $S_{n}$; if $n$ is even, then the exceptional set is thin.
LA - eng
KW - Orthogonal polynomials; Jacobi polynomial; Rational point; Riemann-Hurwitz formula; Specialization; Jacobi polynomials; irreducibility; Galois groups
UR - http://eudml.org/doc/10878
ER -

References

top
  1. S. Ahlgren, K. Ono, Arithmetic of singular moduli and class polynomials. Compos. Math. 141 (2005), 283–312. Zbl1133.11036MR2134268
  2. J. Brillhart, P. Morton, Class numbers of quadratic fields, Hasse invariants of elliptic curves, and the supersingular polynomial. J. Number Theory. 106 (2004), 79–111. Zbl1083.11036MR2049594
  3. R. Coleman, On the Galois groups of the exponential Taylor polynomials. L’Enseignement Math. 33 (1987), 183–189. Zbl0672.12004MR925984
  4. J.D. Dixon, B. Mortimer, Permutation Groups. Springer-Verlag, 1996. Zbl0951.20001MR1409812
  5. F. Hajir, Algebraic properties of a family of generalized Laguerre polynomials. To appear in Canad. J. Math. Zbl1255.33006MR2514486
  6. F. Hajir, On the Galois group of generalized Laguerre polynomials. J. Théor. Nombres Bordeaux 17 (2005), 517–525. Zbl1094.11042MR2211305
  7. F. Hajir, S. Wong, Specializations of one-parameter families of polynomials. Annales de L’Institut Fourier. 56 (2006), 1127-1163. Zbl1160.12004MR2266886
  8. M. Hindry, J. Silverman, Diophantine Geometry, An Introduction. Springer-Verlag, 2000. Zbl0948.11023MR1745599
  9. M. Kaneko, D. Zagier, Supersingular j -invariants, hypergeometric series, and Atkin’s orthogonal polynomials. In Computational perspectives on number theory. AMS/IP Stud. Adv. Math. 7 (1998), 97–126. Zbl0955.11018MR1486833
  10. M. Liebeck, C. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), no. 2, 365–383. Zbl0632.20011MR916173
  11. K. Mahlburg, K. Ono, Arithmetic of certain hypergeometric modular forms. Acta Arith. 113 (2004), 39–55. Zbl1100.11015MR2046967
  12. P. Müller, Finiteness results for Hilbert’s irreducibility theorem. Ann. Inst. Fourier 52 (2002), 983–1015. Zbl1014.12002MR1926669
  13. I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermitschen Polynome. Gesammelte Abhandlungen. Band III, 227–233, Springer, 1973. Zbl0002.11501
  14. I. Schur. Gessammelte Abhandlungen Vol. 3, Springer, 1973 Zbl0274.01054
  15. E. Sell, On a family of generalized Laguerre polynomials. J. Number Theory 107 (2004), 266–281. Zbl1053.11083MR2072388
  16. G. Szegö, Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975. Zbl0305.42011
  17. S. Wong, On the genus of generalized Laguerre polynomials. J. Algebra. 288 (2005), no. 2, 392–399. Zbl1078.33009MR2146136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.