Finiteness results for Hilbert's irreducibility theorem

Peter Müller[1]

  • [1] Universität Heidelberg, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg (Allemagne)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 4, page 983-1015
  • ISSN: 0373-0956

Abstract

top
Let k be a number field, 𝒪 k its ring of integers, and f ( t , X ) k ( t ) [ X ] be an irreducible polynomial. Hilbert’s irreducibility theorem gives infinitely many integral specializations t t ¯ 𝒪 k such that f ( t ¯ , X ) is still irreducible. In this paper we study the set Red f ( 𝒪 k ) of those t ¯ 𝒪 k with f ( t ¯ , X ) reducible. We show that Red f ( 𝒪 k ) is a finite set under rather weak assumptions. In particular, previous results obtained by diophantine approximation techniques, appear as special cases of some of our results. Our method is different. We use elementary group theory, valuation theory, and Siegel’s theorem about integral points on algebraic curves. Indeed, using the Siegel-Lang extension of Siegel’s theorem, most of our results hold over more general fields. Using the classification of the finite simple groups, further results can be obtained. The last section contains a short survey.

How to cite

top

Müller, Peter. "Finiteness results for Hilbert's irreducibility theorem." Annales de l’institut Fourier 52.4 (2002): 983-1015. <http://eudml.org/doc/116011>.

@article{Müller2002,
abstract = {Let $k$ be a number field, $\{\mathcal \{O\}\}_k$ its ring of integers, and $f(t,X)\in k(t)[X]$ be an irreducible polynomial. Hilbert’s irreducibility theorem gives infinitely many integral specializations $t\mapsto \bar\{t\}\in \{\mathcal \{O\}\}_k$ such that $f(\bar\{t\},X)$ is still irreducible. In this paper we study the set $\{\rm Red\}_f(\{\mathcal \{O\}\}_k)$ of those $\bar\{t\}\in \{\mathcal \{O\}\}_k$ with $f(\bar\{t\},X)$ reducible. We show that $\{\rm Red\}_f(\{\mathcal \{O\}\}_k)$ is a finite set under rather weak assumptions. In particular, previous results obtained by diophantine approximation techniques, appear as special cases of some of our results. Our method is different. We use elementary group theory, valuation theory, and Siegel’s theorem about integral points on algebraic curves. Indeed, using the Siegel-Lang extension of Siegel’s theorem, most of our results hold over more general fields. Using the classification of the finite simple groups, further results can be obtained. The last section contains a short survey.},
affiliation = {Universität Heidelberg, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg (Allemagne)},
author = {Müller, Peter},
journal = {Annales de l’institut Fourier},
keywords = {Hilbert's irreducibility theorem; Hilbert sets; permutation groups},
language = {eng},
number = {4},
pages = {983-1015},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finiteness results for Hilbert's irreducibility theorem},
url = {http://eudml.org/doc/116011},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Müller, Peter
TI - Finiteness results for Hilbert's irreducibility theorem
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 983
EP - 1015
AB - Let $k$ be a number field, ${\mathcal {O}}_k$ its ring of integers, and $f(t,X)\in k(t)[X]$ be an irreducible polynomial. Hilbert’s irreducibility theorem gives infinitely many integral specializations $t\mapsto \bar{t}\in {\mathcal {O}}_k$ such that $f(\bar{t},X)$ is still irreducible. In this paper we study the set ${\rm Red}_f({\mathcal {O}}_k)$ of those $\bar{t}\in {\mathcal {O}}_k$ with $f(\bar{t},X)$ reducible. We show that ${\rm Red}_f({\mathcal {O}}_k)$ is a finite set under rather weak assumptions. In particular, previous results obtained by diophantine approximation techniques, appear as special cases of some of our results. Our method is different. We use elementary group theory, valuation theory, and Siegel’s theorem about integral points on algebraic curves. Indeed, using the Siegel-Lang extension of Siegel’s theorem, most of our results hold over more general fields. Using the classification of the finite simple groups, further results can be obtained. The last section contains a short survey.
LA - eng
KW - Hilbert's irreducibility theorem; Hilbert sets; permutation groups
UR - http://eudml.org/doc/116011
ER -

References

top
  1. M. Cavachi, On a special case of Hilbert's irreducibility theorem, J. Number Theory 82 (2000), 96-99 Zbl0985.12001MR1755156
  2. P. Dèbes, G-fonctions et théorème d`irréductibilité de Hilbert, Acta Arith 47 (1986), 371-402 Zbl0565.12012MR884733
  3. P. Dèbes, On the irreducibility of the polynomials P ( t m , Y ) , J. Number Theory 42 (1992), 141-157 Zbl0770.12005MR1183373
  4. P. Dèbes, Hilbert subsets and S-integral points, Manuscripta Math. 89 (1996), 107-137 Zbl0853.12001MR1368540
  5. P. Dèbes, M. D. Fried, Integral specialization of families of rational functions, Pacific J. Math 190 (1999), 45-85 Zbl1016.12002MR1722766
  6. J. D. Dixon, B. Mortimer, Permutation Groups, (1996), Springer-Verlag, New York Zbl0951.20001MR1409812
  7. M. Fried, R. E. MacRae, On the invariance of chains of fields, Illinois J. Math. 13 (1969), 165-171 Zbl0174.07302MR238815
  8. M. Fried, On Hilbert's irreducibility theorem, J. Number Theory 6 (1974), 211-231 Zbl0299.12002MR349624
  9. M. Fried, Fields of definition of function fields and Hurwitz families -- Groups as Galois groups, Comm. Algebra 5 (1977), 17-82 Zbl0478.12006MR453746
  10. M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, The Santa Cruz Conference on Finite Groups vol. 37 (1980), 571-602, Amer. Math. Soc., Providence, Rhode Island Zbl0451.14011
  11. M. Fried, On the Sprindžuk-Weissauer approach to universal Hilbert subsets, Israel J. Math. 51 (1985), 347-363 Zbl0579.12002MR804491
  12. D. Gorenstein, Finite Groups, (1968), Harper and Row, New York-Evanston-London Zbl0185.05701MR231903
  13. A. Grothendieck, Revêtement étales et groupe fondamental, SGA1 vol. 224 (1971), Springer-Verlag 
  14. R. M. Guralnick, J. G. Thompson, Finite groups of genus zero, J. Algebra 131 (1990), 303-341 Zbl0713.20011MR1055011
  15. R. M. Guralnick, Monodromy groups of curves Zbl1071.20001
  16. B. Huppert, N. Blackburn, Finite Groups III, (1982), Springer-Verlag, Berlin Heidelberg Zbl0514.20002MR662826
  17. I. M. Isaacs, Character Theory of Finite Groups, 69 (1976), Academic Press Zbl0337.20005MR460423
  18. N. Klingen, Arithmetical Similarities -- Prime Decomposition and Finite Group Theory, (1998), Oxford University Press, Oxford Zbl0896.11042MR1638821
  19. S. Lang, Fundamentals of Diophantine Geometry, (1983), Springer-Verlag, New York Zbl0528.14013MR715605
  20. K. Langmann, Ganzalgebraische Punkte und der Hilbertsche Irreduzibilitätssatz, J. Reine Angew. Math 405 (1990), 131-146 Zbl0687.14001MR1040999
  21. K. Langmann, Werteverhalten holomorpher Funktionen auf Überlagerungen und zahlentheoretische Analogien, Math. Ann 299 (1994), 127-153 Zbl0805.11077MR1273080
  22. K. Langmann, Werteverhalten holomorpher Funktionen auf Überlagerungen und zahlentheoretische Analogien II, Math. Nachr. 211 (2000), 79-108 Zbl0995.11044MR1743486
  23. G. Malle, B. H. Matzat, Inverse Galois Theory, (1999), Springer-Verlag, Berlin Zbl0940.12001MR1711577
  24. P. Müller, Hilbert's irreducibility theorem for prime degree and general polynomials, Israel J. Math 109 (1999), 319-337 Zbl0926.12001MR1679603
  25. P. Müller, Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Siegel functions (submitted) 
  26. L. Scott, Matrices and cohomology, Anal. Math 105 (1977), 473-492 Zbl0399.20047MR447434
  27. J.-P. Serre, Local Fields, (1979), Springer-Verlag, New York Zbl0423.12016MR554237
  28. C. L. Siegel, Über einige Anwendungen diophantischer Approximationen (Ges. Abh., I), Abh. Pr. Akad. Wiss. 1 (1929), 41-69 ; 209-266 Zbl56.0180.05
  29. V. G. Sprind{#x017E;}uk, Arithmetic specializations in polynomials, J. Reine Angew. Math 340 (1983), 26-52 Zbl0497.12001MR691959
  30. H. Völklein, Groups as Galois Groups -- an Introduction, (1996), Cambridge University Press, New York Zbl0868.12003MR1405612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.