On computing quaternion quotient graphs for function fields

Gebhard Böckle; Ralf Butenuth[1]

  • [1] Interdisziplinäres Zentrum für wissenschaftliches Rechnen Im Neuenheimer Feld 368 69120 Heidelberg, Germany

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 1, page 73-99
  • ISSN: 1246-7405

Abstract

top
Let Λ be a maximal 𝔽 q [ T ] -order in a division quaternion algebra over 𝔽 q ( T ) which is split at the place . The present article gives an algorithm to compute a fundamental domain for the action of the group of units Λ * on the Bruhat-Tits tree 𝒯 associated to PGL 2 ( 𝔽 q ( ( 1 / T ) ) ) . This action is a function field analog of the action of a co-compact Fuchsian group on the upper half plane. The algorithm also yields an explicit presentation of the group Λ * in terms of generators and relations. Moreover we determine an upper bound for its running time using that Λ * 𝒯 is almost Ramanujan.

How to cite

top

Böckle, Gebhard, and Butenuth, Ralf. "On computing quaternion quotient graphs for function fields." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 73-99. <http://eudml.org/doc/251039>.

@article{Böckle2012,
abstract = {Let $\Lambda $ be a maximal $\{\{\mathbb\{F\}\}\,\!\{\}_q\}[T]$-order in a division quaternion algebra over $\{\{\mathbb\{F\}\}\,\!\{\}_q\}(T)$ which is split at the place $\infty $. The present article gives an algorithm to compute a fundamental domain for the action of the group of units $\Lambda ^*$ on the Bruhat-Tits tree $\mathcal\{T\}$ associated to $\{\rm PGL\}_2(\{\{\mathbb\{F\}\}\,\!\{\}_q\}((1/T)))$. This action is a function field analog of the action of a co-compact Fuchsian group on the upper half plane. The algorithm also yields an explicit presentation of the group $\Lambda ^*$ in terms of generators and relations. Moreover we determine an upper bound for its running time using that $\Lambda ^*\backslash \mathcal\{T\}$ is almost Ramanujan.},
affiliation = {Interdisziplinäres Zentrum für wissenschaftliches Rechnen Im Neuenheimer Feld 368 69120 Heidelberg, Germany},
author = {Böckle, Gebhard, Butenuth, Ralf},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {73-99},
publisher = {Société Arithmétique de Bordeaux},
title = {On computing quaternion quotient graphs for function fields},
url = {http://eudml.org/doc/251039},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Böckle, Gebhard
AU - Butenuth, Ralf
TI - On computing quaternion quotient graphs for function fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 73
EP - 99
AB - Let $\Lambda $ be a maximal ${{\mathbb{F}}\,\!{}_q}[T]$-order in a division quaternion algebra over ${{\mathbb{F}}\,\!{}_q}(T)$ which is split at the place $\infty $. The present article gives an algorithm to compute a fundamental domain for the action of the group of units $\Lambda ^*$ on the Bruhat-Tits tree $\mathcal{T}$ associated to ${\rm PGL}_2({{\mathbb{F}}\,\!{}_q}((1/T)))$. This action is a function field analog of the action of a co-compact Fuchsian group on the upper half plane. The algorithm also yields an explicit presentation of the group $\Lambda ^*$ in terms of generators and relations. Moreover we determine an upper bound for its running time using that $\Lambda ^*\backslash \mathcal{T}$ is almost Ramanujan.
LA - eng
UR - http://eudml.org/doc/251039
ER -

References

top
  1. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Zbl0898.68039MR1484478
  2. R. Butenuth, Quaternionic Drinfeld modular forms. PhD thesis, in preparation. Zbl1293.11070
  3. J. Cremona, The elliptic curve database for conductors to 130000. Algorithmic number theory (Berlin, 2006), Lecture Notes Comp. Sci. 4076, 11–29. Springer, Berlin, 2006. Zbl1143.11324MR2282912
  4. L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms. Math. Comp. 76 (2007), no. 258, 1039–1057. Zbl1158.11023MR2291849
  5. E.-U. Gekeler, U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields. Int. J. Math. 6 (1995), 689–708. Zbl0858.11025MR1351161
  6. M. Greenberg, J. Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms. Accepted in Math. Comp. Zbl1233.11050MR2772112
  7. P. Gunnells, D. Yasaki, Hecke operators and Hilbert modular forms. Algorithmic number theory (Berlin, 2008), Lecture Notes Comp. Sci. 5011, 387–401. Springer, Berlin, 2008. Zbl1205.11056MR2467860
  8. F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics J. Symbolic Computation 33 (2002), no. 4, 425–445. Zbl1058.14071MR1890579
  9. J. C. Jantzen, J. Schwermer, Algebra. Springer-Lehrbuch, 2006. 
  10. M. Kirschmer, J. Voight, Algorithmic enumeration of ideal classes for quaternion orders. SIAM J. Comput. 39 (2010), no. 5, 1714–1747. Zbl1208.11125MR2592031
  11. A. Lubotzky, Discrete groups, expanding graphs and invariant measures. Birkhäuser, 1993. MR1308046
  12. A. Lubotzky, B. Samuels, U. Vishne, Ramanujan complexes of type A ˜ d * . Israel J. Math. 149 (2005), 267–299. Zbl1087.05036MR2191217
  13. V. K. Murty, J. Scherk, Effective versions of the Chebotarev density theorem for function fields. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 6, 523–528. Zbl0822.11077MR1298275
  14. M. Papikian, Local diophantine properties of modular curves of 𝒟 -elliptic sheaves. Accepted in J. reine angew. Math. Zbl1296.11082
  15. M. Papikian, On generators of arithmetic groups over function fields. Accepted in International Journal of Number Theory. Zbl1231.11047
  16. S. Paulus, Lattice basis reduction in function fields. Proceedings of the Third Symposium on Algorithmic Number Theory, ANTS-III (1998), LNCS 1423, 567–575. Zbl0935.11045MR1726102
  17. M. Rosen, Number theory in function fields. GTM 210. Springer, Berlin-New York, 2002. MR1876657
  18. J.-P. Serre, Trees. Springer, Berlin-New York, 1980. Zbl0548.20018MR607504
  19. J.-P. Serre, A course in arithmetic. GTM 7. Springer, Berlin-New York, 1973. Zbl0256.12001MR344216
  20. J.T. Teitelbaum, The Poisson Kernel For Drinfeld Modular Curves. J.A.M.S. 4 (1991), 491–511. Zbl0735.11025MR1099281
  21. J.T. Teitelbaum, Modular symbols for A . Duke Math. J. 68 (1992), 271–295. Zbl0777.11021MR1191561
  22. H. Stichtenoth, Algebraic Function Fields and Codes. GTM 254, Springer, Berlin-New York, (2009). Zbl0816.14011MR2464941
  23. W. Stein, Modular forms database, (2004). http://modular.math.washington.edu/Tables. 
  24. M.-F. Vignéras, Arithmétique des Algèbres de Quaternions. Lecture Notes in Math. 800. Springer, Berlin, 1980. Zbl0422.12008MR580949
  25. J. Voight, Computing fundamental domains for Fuchsian groups. J. Théor. Nombres Bordeaux 21 (2009), 469–491. Zbl1222.11057MR2541438

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.