On computing quaternion quotient graphs for function fields
Gebhard Böckle; Ralf Butenuth[1]
- [1] Interdisziplinäres Zentrum für wissenschaftliches Rechnen Im Neuenheimer Feld 368 69120 Heidelberg, Germany
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 1, page 73-99
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBöckle, Gebhard, and Butenuth, Ralf. "On computing quaternion quotient graphs for function fields." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 73-99. <http://eudml.org/doc/251039>.
@article{Böckle2012,
abstract = {Let $\Lambda $ be a maximal $\{\{\mathbb\{F\}\}\,\!\{\}_q\}[T]$-order in a division quaternion algebra over $\{\{\mathbb\{F\}\}\,\!\{\}_q\}(T)$ which is split at the place $\infty $. The present article gives an algorithm to compute a fundamental domain for the action of the group of units $\Lambda ^*$ on the Bruhat-Tits tree $\mathcal\{T\}$ associated to $\{\rm PGL\}_2(\{\{\mathbb\{F\}\}\,\!\{\}_q\}((1/T)))$. This action is a function field analog of the action of a co-compact Fuchsian group on the upper half plane. The algorithm also yields an explicit presentation of the group $\Lambda ^*$ in terms of generators and relations. Moreover we determine an upper bound for its running time using that $\Lambda ^*\backslash \mathcal\{T\}$ is almost Ramanujan.},
affiliation = {Interdisziplinäres Zentrum für wissenschaftliches Rechnen Im Neuenheimer Feld 368 69120 Heidelberg, Germany},
author = {Böckle, Gebhard, Butenuth, Ralf},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {73-99},
publisher = {Société Arithmétique de Bordeaux},
title = {On computing quaternion quotient graphs for function fields},
url = {http://eudml.org/doc/251039},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Böckle, Gebhard
AU - Butenuth, Ralf
TI - On computing quaternion quotient graphs for function fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 73
EP - 99
AB - Let $\Lambda $ be a maximal ${{\mathbb{F}}\,\!{}_q}[T]$-order in a division quaternion algebra over ${{\mathbb{F}}\,\!{}_q}(T)$ which is split at the place $\infty $. The present article gives an algorithm to compute a fundamental domain for the action of the group of units $\Lambda ^*$ on the Bruhat-Tits tree $\mathcal{T}$ associated to ${\rm PGL}_2({{\mathbb{F}}\,\!{}_q}((1/T)))$. This action is a function field analog of the action of a co-compact Fuchsian group on the upper half plane. The algorithm also yields an explicit presentation of the group $\Lambda ^*$ in terms of generators and relations. Moreover we determine an upper bound for its running time using that $\Lambda ^*\backslash \mathcal{T}$ is almost Ramanujan.
LA - eng
UR - http://eudml.org/doc/251039
ER -
References
top- W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Zbl0898.68039MR1484478
- R. Butenuth, Quaternionic Drinfeld modular forms. PhD thesis, in preparation. Zbl1293.11070
- J. Cremona, The elliptic curve database for conductors to 130000. Algorithmic number theory (Berlin, 2006), Lecture Notes Comp. Sci. 4076, 11–29. Springer, Berlin, 2006. Zbl1143.11324MR2282912
- L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms. Math. Comp. 76 (2007), no. 258, 1039–1057. Zbl1158.11023MR2291849
- E.-U. Gekeler, U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields. Int. J. Math. 6 (1995), 689–708. Zbl0858.11025MR1351161
- M. Greenberg, J. Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms. Accepted in Math. Comp. Zbl1233.11050MR2772112
- P. Gunnells, D. Yasaki, Hecke operators and Hilbert modular forms. Algorithmic number theory (Berlin, 2008), Lecture Notes Comp. Sci. 5011, 387–401. Springer, Berlin, 2008. Zbl1205.11056MR2467860
- F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics J. Symbolic Computation 33 (2002), no. 4, 425–445. Zbl1058.14071MR1890579
- J. C. Jantzen, J. Schwermer, Algebra. Springer-Lehrbuch, 2006.
- M. Kirschmer, J. Voight, Algorithmic enumeration of ideal classes for quaternion orders. SIAM J. Comput. 39 (2010), no. 5, 1714–1747. Zbl1208.11125MR2592031
- A. Lubotzky, Discrete groups, expanding graphs and invariant measures. Birkhäuser, 1993. MR1308046
- A. Lubotzky, B. Samuels, U. Vishne, Ramanujan complexes of type . Israel J. Math. 149 (2005), 267–299. Zbl1087.05036MR2191217
- V. K. Murty, J. Scherk, Effective versions of the Chebotarev density theorem for function fields. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 6, 523–528. Zbl0822.11077MR1298275
- M. Papikian, Local diophantine properties of modular curves of -elliptic sheaves. Accepted in J. reine angew. Math. Zbl1296.11082
- M. Papikian, On generators of arithmetic groups over function fields. Accepted in International Journal of Number Theory. Zbl1231.11047
- S. Paulus, Lattice basis reduction in function fields. Proceedings of the Third Symposium on Algorithmic Number Theory, ANTS-III (1998), LNCS 1423, 567–575. Zbl0935.11045MR1726102
- M. Rosen, Number theory in function fields. GTM 210. Springer, Berlin-New York, 2002. MR1876657
- J.-P. Serre, Trees. Springer, Berlin-New York, 1980. Zbl0548.20018MR607504
- J.-P. Serre, A course in arithmetic. GTM 7. Springer, Berlin-New York, 1973. Zbl0256.12001MR344216
- J.T. Teitelbaum, The Poisson Kernel For Drinfeld Modular Curves. J.A.M.S. 4 (1991), 491–511. Zbl0735.11025MR1099281
- J.T. Teitelbaum, Modular symbols for . Duke Math. J. 68 (1992), 271–295. Zbl0777.11021MR1191561
- H. Stichtenoth, Algebraic Function Fields and Codes. GTM 254, Springer, Berlin-New York, (2009). Zbl0816.14011MR2464941
- W. Stein, Modular forms database, (2004). http://modular.math.washington.edu/Tables.
- M.-F. Vignéras, Arithmétique des Algèbres de Quaternions. Lecture Notes in Math. 800. Springer, Berlin, 1980. Zbl0422.12008MR580949
- J. Voight, Computing fundamental domains for Fuchsian groups. J. Théor. Nombres Bordeaux 21 (2009), 469–491. Zbl1222.11057MR2541438
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.