On the counting function for the generalized Niven numbers
Ryan Daileda[1]; Jessica Jou[2]; Robert Lemke-Oliver[3]; Elizabeth Rossolimo[4]; Enrique Treviño[5]
- [1] Mathematics Department Trinity University One Trinity Place San Antonio, TX 78212-7200, USA
- [2] 678-2 Azumi, Ichinomiya-cho Shiso-shi, Hyogo 671-4131 Japan
- [3] Deparment of Mathematics University of Wisconsin Madison 480 Lincoln Dr Madison, WI 53706 USA
- [4] Department of Mathematics and Statistics Lederle Graduate Research Tower Box 34515 University of Massachusetts Amherst Amherst, MA 01003-9305, USA
- [5] Department of Mathematics 6188 Kemeny Hall Dartmouth College Hanover, NH 03755-3551, USA
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 503-515
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDaileda, Ryan, et al. "On the counting function for the generalized Niven numbers." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 503-515. <http://eudml.org/doc/10895>.
@article{Daileda2009,
abstract = {Given an integer base $q \ge 2$ and a completely $q$-additive arithmetic function $f$ taking integer values, we deduce an asymptotic expression for the counting function\begin\{equation*\} N\_f(x) = \# \left\lbrace 0 \le n < x \, | \, f(n) \mid n \right\rbrace \end\{equation*\}under a mild restriction on the values of $f$. When $f = s_q$, the base $q$ sum of digits function, the integers counted by $N_f$ are the so-called base $q$ Niven numbers, and our result provides a generalization of the asymptotic known in that case.},
affiliation = {Mathematics Department Trinity University One Trinity Place San Antonio, TX 78212-7200, USA; 678-2 Azumi, Ichinomiya-cho Shiso-shi, Hyogo 671-4131 Japan; Deparment of Mathematics University of Wisconsin Madison 480 Lincoln Dr Madison, WI 53706 USA; Department of Mathematics and Statistics Lederle Graduate Research Tower Box 34515 University of Massachusetts Amherst Amherst, MA 01003-9305, USA; Department of Mathematics 6188 Kemeny Hall Dartmouth College Hanover, NH 03755-3551, USA},
author = {Daileda, Ryan, Jou, Jessica, Lemke-Oliver, Robert, Rossolimo, Elizabeth, Treviño, Enrique},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Niven number; Harshad number; sum of digits function; completely -additive arithmetic function; asymptotic formula},
language = {eng},
number = {3},
pages = {503-515},
publisher = {Université Bordeaux 1},
title = {On the counting function for the generalized Niven numbers},
url = {http://eudml.org/doc/10895},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Daileda, Ryan
AU - Jou, Jessica
AU - Lemke-Oliver, Robert
AU - Rossolimo, Elizabeth
AU - Treviño, Enrique
TI - On the counting function for the generalized Niven numbers
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 503
EP - 515
AB - Given an integer base $q \ge 2$ and a completely $q$-additive arithmetic function $f$ taking integer values, we deduce an asymptotic expression for the counting function\begin{equation*} N_f(x) = \# \left\lbrace 0 \le n < x \, | \, f(n) \mid n \right\rbrace \end{equation*}under a mild restriction on the values of $f$. When $f = s_q$, the base $q$ sum of digits function, the integers counted by $N_f$ are the so-called base $q$ Niven numbers, and our result provides a generalization of the asymptotic known in that case.
LA - eng
KW - Niven number; Harshad number; sum of digits function; completely -additive arithmetic function; asymptotic formula
UR - http://eudml.org/doc/10895
ER -
References
top- C. N. Cooper, R. E. Kennedy, On the natural density of the Niven numbers. College Math. J. 15 (1984), 309–312.
- C. N. Cooper, R. E. Kennedy, On an asymptotic formula for the Niven numbers. Internat. J. Math. Sci. 8 (1985), 537–543. Zbl0582.10007MR809074
- C. N. Cooper, R. E. Kennedy, A partial asymptotic formula for the Niven numbers. Fibonacci Quart. 26 (1988), 163–168. Zbl0644.10009MR938592
- C. N. Cooper, R. E. Kennedy, Chebyshev’s inequality and natural density. Amer. Math. Monthly 96 (1989), 118–124. Zbl0694.10004MR992072
- J.-M. De Koninck, N. Doyon, On the number of Niven numbers up to . Fibonacci Quart. 41 (5) (2003), 431–440. Zbl1057.11005MR2053095
- J.-M. De Koninck, N. Doyon, I. Kátai, On the counting function for the Niven numbers. Acta Arith. 106 (3) (2003), 265–275. Zbl1023.11003MR1957109
- H. Delange, Sur les fonctions -additives ou -multiplicatives. Acta Arith. 21 (1972), 285–298. Zbl0219.10062MR309891
- C. Mauduit, C. Pomerance, A. Sárközy, On the distribution in residue classes of integers with a fixed sum of digits. Ramanujan J. 9 (1-2) (2005), 45–62. Zbl1155.11345MR2166377
- V. V. Petrov, Sums of Independent Random Variables. Ergeb. Math. Grenzgeb. 82, Springer, 1975. Zbl0322.60042MR388499
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.