Oscillation of Mertens’ product formula
Harold G. Diamond[1]; Janos Pintz[2]
- [1] Univ. of Illinois Dept. of Math. 1409 West Green Street Urbana, IL 61801 USA
- [2] Rényi Mathematical Institute Hungarian Academy of Sciences Reáltanoda u. 13-15 Budapest, H-1053, Hungary
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 523-533
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDiamond, Harold G., and Pintz, Janos. "Oscillation of Mertens’ product formula." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 523-533. <http://eudml.org/doc/10897>.
@article{Diamond2009,
abstract = {Mertens’ product formula asserts that\[ \prod \_\{p \le x\} \Big ( 1 - \frac\{1\}\{p\} \Big )\, \log x \, \rightarrow \, e^\{-\gamma \} \]as $x \rightarrow \infty $. Calculation shows that the right side of the formula exceeds the left side for $2 \le x \le 10^8$. It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on $\pi (x) - \textrm\{li \} x$, this and a complementary inequality might change their sense for sufficiently large values of $x$. We show this to be the case.},
affiliation = {Univ. of Illinois Dept. of Math. 1409 West Green Street Urbana, IL 61801 USA; Rényi Mathematical Institute Hungarian Academy of Sciences Reáltanoda u. 13-15 Budapest, H-1053, Hungary},
author = {Diamond, Harold G., Pintz, Janos},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Mertens’ product formula; oscillation; Euler’s constant; Riemann hypothesis; zeta function; Mertens' theorem; oscillation theorem; Tauberian theory},
language = {eng},
number = {3},
pages = {523-533},
publisher = {Université Bordeaux 1},
title = {Oscillation of Mertens’ product formula},
url = {http://eudml.org/doc/10897},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Diamond, Harold G.
AU - Pintz, Janos
TI - Oscillation of Mertens’ product formula
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 523
EP - 533
AB - Mertens’ product formula asserts that\[ \prod _{p \le x} \Big ( 1 - \frac{1}{p} \Big )\, \log x \, \rightarrow \, e^{-\gamma } \]as $x \rightarrow \infty $. Calculation shows that the right side of the formula exceeds the left side for $2 \le x \le 10^8$. It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on $\pi (x) - \textrm{li } x$, this and a complementary inequality might change their sense for sufficiently large values of $x$. We show this to be the case.
LA - eng
KW - Mertens’ product formula; oscillation; Euler’s constant; Riemann hypothesis; zeta function; Mertens' theorem; oscillation theorem; Tauberian theory
UR - http://eudml.org/doc/10897
ER -
References
top- R. J. Anderson and H. M. Stark, Oscillation theorems. In Analytic number theory (Philadelphia, Pa., 1980), pp. 79–106, Lecture Notes in Math. 899, Springer, 1981. MR0654520 (83h:10082). Zbl0472.10044MR654520
- T. M. Apostol, Introduction to analytic number theory. Undergraduate Texts in Mathematics, Springer, 1976. MR0434929 (55 #7892). Zbl0335.10001MR434929
- P. T. Bateman and H. G. Diamond, Analytic Number Theory: An Introductory Course. World Scientific Pub. Co., 2004. MR2111739 (2005h:11208). Zbl1074.11001MR2111739
- H. Cramér, Some theorems concerning prime numbers. Ark. f. Mat., Astron. och Fys. 15, No. 5 (1921), 1–33. Zbl47.0156.01
- H. G. Diamond, Changes of sign of . Enseign. Math. (2) 21 (1975), 1–14. MR0376566 (51 #12741). Zbl0304.10025MR376566
- A. Y. Fawaz, The explicit formula for , Proc. London Math. Soc. (3) 1 (1951), 86–103. MR0043841 (13 #327c). Zbl0042.27302MR43841
- A. Y. Fawaz, On an unsolved problem in the analytic theory of numbers, Quart. J. Math., Oxford Ser. (2) 3 (1952), 282–295. MR0051857 (14 #537a). Zbl0047.27901MR51857
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. Oxford Univ. Press, 1979. MR0568909 (81i:10002). Zbl0423.10001MR568909
- A. E. Ingham, Two conjectures in the theory of numbers. Am. J. Math. 64 (1942), 313–319. MR000202 (3 #271c). Zbl0063.02974MR6202
- J. E. Littlewood, Sur la distribution des nombres premiers. Comptes Rendus Acad. Sci. Paris 158 (1914), 1869–1872. Zbl45.0305.01
- F. Mertens, Ein Beitrag zur analytischen Zahlentheorie. J. reine angew. Math. 78 (1874), 46–62.
- H. L. Montgomery and R. C. Vaughan, Multiplicative number theory, I. Classical theory. Cambridge Studies in Adv. Math. 97. Cambridge Univ. Press, 2007. MR2378655. Zbl1142.11001MR2378655
- J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94. MR0137689 (25 #1139). Zbl0122.05001MR137689
- J. Sondow and E. W. Weisstein, Mertens’ Theorem. MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/MertensTheorem.html.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.