CM liftings of supersingular elliptic curves
Ben Kane[1]
- [1] Department of Mathematics Radboud Universiteit Nijmegen Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 635-663
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKane, Ben. "CM liftings of supersingular elliptic curves." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 635-663. <http://eudml.org/doc/10902>.
@article{Kane2009,
abstract = {Assuming GRH, we present an algorithm which inputs a prime $p$ and outputs the set of fundamental discriminants $D<0$ such that the reduction map modulo a prime above $p$ from elliptic curves with CM by $\mathcal\{O\}_\{D\}$ to supersingular elliptic curves in characteristic $p$ is surjective. In the algorithm we first determine an explicit constant $D_p$ so that $|D|> D_p$ implies that the map is necessarily surjective and then we compute explicitly the cases $|D|<D_p$.},
affiliation = {Department of Mathematics Radboud Universiteit Nijmegen Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands},
author = {Kane, Ben},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Quaternion Algebra; Elliptic Curves; Maximal Orders; Half Integer Weight Modular Forms; Kohnen’s Plus Space; Shimura Lifts; quaternion algebra; elliptic curves; maximal orders; half integer weight modular forms; Kohnen's plus space; Shimura lifts},
language = {eng},
number = {3},
pages = {635-663},
publisher = {Université Bordeaux 1},
title = {CM liftings of supersingular elliptic curves},
url = {http://eudml.org/doc/10902},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Kane, Ben
TI - CM liftings of supersingular elliptic curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 635
EP - 663
AB - Assuming GRH, we present an algorithm which inputs a prime $p$ and outputs the set of fundamental discriminants $D<0$ such that the reduction map modulo a prime above $p$ from elliptic curves with CM by $\mathcal{O}_{D}$ to supersingular elliptic curves in characteristic $p$ is surjective. In the algorithm we first determine an explicit constant $D_p$ so that $|D|> D_p$ implies that the map is necessarily surjective and then we compute explicitly the cases $|D|<D_p$.
LA - eng
KW - Quaternion Algebra; Elliptic Curves; Maximal Orders; Half Integer Weight Modular Forms; Kohnen’s Plus Space; Shimura Lifts; quaternion algebra; elliptic curves; maximal orders; half integer weight modular forms; Kohnen's plus space; Shimura lifts
UR - http://eudml.org/doc/10902
ER -
References
top- J. Cremona, Algorithms for elliptic curves. Cambridge Univ. Press, 1992. Zbl0758.14042MR1201151
- P. Deligne, La conjecture de weil i. Inst. Hautes Études Sci. Publ. Math 43 (1974), 273–307. Zbl0287.14001MR340258
- M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörpen. Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272. Zbl0025.02003MR5125
- W. Duke, Hyperbolic distribution problems and half-integral weight maass forms. Invent. Math. 92 (1998), 73–90. Zbl0628.10029MR931205
- W. Duke and R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99 (1990), no. 1, 49–57. Zbl0692.10020MR1029390
- A. Earnest, J. Hsia, and D. Hung, Primitive representations by spinor genera of ternary quadratic forms. J. London Math. Soc. (2) 50 (1994), no. 2, 222–230. Zbl0805.11032MR1291733
- N. Elkies, Supersingular primes for elliptic curves over real number fields. Compositio Mathematica 72 (1989), 165–172. Zbl0708.14020MR1030140
- N. Elkies, K. Ono, and T. Yang, Reduction of CM elliptic curves and modular function congruences. Int. Math. Res. Not. 44 (2005), 2695–2707. Zbl1166.11323MR2181309
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. (1985), 463–471. Zbl0556.10022MR777278
- W. Gautschi, A computational procedure for incomplete Gamma functions. ACM Transactions on Mathematical Software 5 (1979), 466–481. Zbl0429.65011MR547763
- B. Gross, Heights and the special values of -series. Number theory (Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. Zbl0623.10019MR894322
- B. Gross and D. Zagier, On singular moduli. J. Reine Angew. Math. 335 (1985), 191–220. Zbl0545.10015MR772491
- T. Ibukiyama, On maximal order of division quaternion algebras over the rational number field with certain optimal embeddings. Nagoya Math J. 88 (1982), 181–195. Zbl0473.12012MR683249
- H. Iwaniec, Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87 (1987), 385–401. Zbl0606.10017MR870736
- B. Jones, The arithmetic theory of quadratic forms. Carcus Monograph Series, no. 10, The Mathematical Association of America, Buffalo, Buffalo, NY, 1950. Zbl0041.17505MR37321
- B. Kane, Representations of integers by ternary quadratic forms. preprint (2007). Zbl1250.11037
- D. Kohel, Endomorphism rings of elliptic curves over finite fields. University of California, Berkeley, Ph.D. Thesis (1996), pp. 1–96.
- W. Kohnen, Newforms of half integral weight. J. reine angew. Math. 333 (1982), 32–72. Zbl0475.10025MR660784
- W. Kohnen and D. Zagier, Values of -series of modular forms at the center of the critical strip. Invent. Math. 64 (1981), 175–198. Zbl0468.10015MR629468
- J. Oesterlé, Nombres de classes des corps quadratiques imaginaires. Astérique 121-122 (1985), 309–323. Zbl0551.12003MR768967
- O. T. O’Meara, Introduction to quadratic forms. Classics in Mathematics, Springer-Verlag, Berlin, 2000, Reprint of the 1973 edition. Zbl1034.11003MR1754311
- K. Ono, Web of modularity: Arithmetic of the coefficients of modular forms and -series. CBMS Regional Conference Series in Mathematics, no. 102, Amer. Math. Soc., Providence, RI, 2003. Zbl1119.11026MR2020489
- K. Ono and K. Soundarajan, Ramanujan’s ternary quadratic form. Invent. Math. 130 (1997), 415–454. Zbl0930.11022MR1483991
- A. Pizer, An algorithm for compute modular forms on . J. Algebra 64 (1980), no. 2, 340–390. Zbl0433.10012MR579066
- R. Schulze-Pillot, Darstellungsmaße von Spinorgeschlechtern ternärer quadratischer Formen. J. Reine Angew. Math., 352 (1984), 114–132. Zbl0533.10016MR758697
- G. Shimura, On modular forms of half integer weight. Ann. of Math. 97 (1973), 440–481. Zbl0266.10022MR332663
- C. Siegel, Über die klassenzahl quadratischer zahlkorper. Acta Arith. 1 (1935), 83–86. Zbl61.0170.02
- J. Silverman, The arithmetic of elliptic curves. Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original. Zbl0585.14026MR1329092
- W. Stein, Explicit approaches to modular abelian varieties. Ph.D. thesis, University of California, Berkeley (2000), pp. 1–96.
- —, Modular forms, a computational approach. Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007, Appendix by P. Gunnells. Zbl1110.11015MR2289048
- J. Sturm, On the congruence of modular forms. Number theory (New York, 1984–1985), Springer, Berlin, 1987, pp. 275–280. Zbl0615.10035MR894516
- M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980. Zbl0422.12008MR580949
- M. Watkins, Class numbers of imaginary quadratic fields. Math. Comp. 73 (2004), 907–938. Zbl1050.11095MR2031415
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.