CM liftings of supersingular elliptic curves

Ben Kane[1]

  • [1] Department of Mathematics Radboud Universiteit Nijmegen Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 3, page 635-663
  • ISSN: 1246-7405

Abstract

top
Assuming GRH, we present an algorithm which inputs a prime p and outputs the set of fundamental discriminants D < 0 such that the reduction map modulo a prime above p from elliptic curves with CM by 𝒪 D to supersingular elliptic curves in characteristic p is surjective. In the algorithm we first determine an explicit constant D p so that | D | > D p implies that the map is necessarily surjective and then we compute explicitly the cases | D | < D p .

How to cite

top

Kane, Ben. "CM liftings of supersingular elliptic curves." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 635-663. <http://eudml.org/doc/10902>.

@article{Kane2009,
abstract = {Assuming GRH, we present an algorithm which inputs a prime $p$ and outputs the set of fundamental discriminants $D&lt;0$ such that the reduction map modulo a prime above $p$ from elliptic curves with CM by $\mathcal\{O\}_\{D\}$ to supersingular elliptic curves in characteristic $p$ is surjective. In the algorithm we first determine an explicit constant $D_p$ so that $|D|&gt; D_p$ implies that the map is necessarily surjective and then we compute explicitly the cases $|D|&lt;D_p$.},
affiliation = {Department of Mathematics Radboud Universiteit Nijmegen Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands},
author = {Kane, Ben},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Quaternion Algebra; Elliptic Curves; Maximal Orders; Half Integer Weight Modular Forms; Kohnen’s Plus Space; Shimura Lifts; quaternion algebra; elliptic curves; maximal orders; half integer weight modular forms; Kohnen's plus space; Shimura lifts},
language = {eng},
number = {3},
pages = {635-663},
publisher = {Université Bordeaux 1},
title = {CM liftings of supersingular elliptic curves},
url = {http://eudml.org/doc/10902},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Kane, Ben
TI - CM liftings of supersingular elliptic curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 635
EP - 663
AB - Assuming GRH, we present an algorithm which inputs a prime $p$ and outputs the set of fundamental discriminants $D&lt;0$ such that the reduction map modulo a prime above $p$ from elliptic curves with CM by $\mathcal{O}_{D}$ to supersingular elliptic curves in characteristic $p$ is surjective. In the algorithm we first determine an explicit constant $D_p$ so that $|D|&gt; D_p$ implies that the map is necessarily surjective and then we compute explicitly the cases $|D|&lt;D_p$.
LA - eng
KW - Quaternion Algebra; Elliptic Curves; Maximal Orders; Half Integer Weight Modular Forms; Kohnen’s Plus Space; Shimura Lifts; quaternion algebra; elliptic curves; maximal orders; half integer weight modular forms; Kohnen's plus space; Shimura lifts
UR - http://eudml.org/doc/10902
ER -

References

top
  1. J. Cremona, Algorithms for elliptic curves. Cambridge Univ. Press, 1992. Zbl0758.14042MR1201151
  2. P. Deligne, La conjecture de weil i. Inst. Hautes Études Sci. Publ. Math 43 (1974), 273–307. Zbl0287.14001MR340258
  3. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörpen. Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272. Zbl0025.02003MR5125
  4. W. Duke, Hyperbolic distribution problems and half-integral weight maass forms. Invent. Math. 92 (1998), 73–90. Zbl0628.10029MR931205
  5. W. Duke and R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99 (1990), no. 1, 49–57. Zbl0692.10020MR1029390
  6. A. Earnest, J. Hsia, and D. Hung, Primitive representations by spinor genera of ternary quadratic forms. J. London Math. Soc. (2) 50 (1994), no. 2, 222–230. Zbl0805.11032MR1291733
  7. N. Elkies, Supersingular primes for elliptic curves over real number fields. Compositio Mathematica 72 (1989), 165–172. Zbl0708.14020MR1030140
  8. N. Elkies, K. Ono, and T. Yang, Reduction of CM elliptic curves and modular function congruences. Int. Math. Res. Not. 44 (2005), 2695–2707. Zbl1166.11323MR2181309
  9. U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. (1985), 463–471. Zbl0556.10022MR777278
  10. W. Gautschi, A computational procedure for incomplete Gamma functions. ACM Transactions on Mathematical Software 5 (1979), 466–481. Zbl0429.65011MR547763
  11. B. Gross, Heights and the special values of L -series. Number theory (Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. Zbl0623.10019MR894322
  12. B. Gross and D. Zagier, On singular moduli. J. Reine Angew. Math. 335 (1985), 191–220. Zbl0545.10015MR772491
  13. T. Ibukiyama, On maximal order of division quaternion algebras over the rational number field with certain optimal embeddings. Nagoya Math J. 88 (1982), 181–195. Zbl0473.12012MR683249
  14. H. Iwaniec, Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87 (1987), 385–401. Zbl0606.10017MR870736
  15. B. Jones, The arithmetic theory of quadratic forms. Carcus Monograph Series, no. 10, The Mathematical Association of America, Buffalo, Buffalo, NY, 1950. Zbl0041.17505MR37321
  16. B. Kane, Representations of integers by ternary quadratic forms. preprint (2007). Zbl1250.11037
  17. D. Kohel, Endomorphism rings of elliptic curves over finite fields. University of California, Berkeley, Ph.D. Thesis (1996), pp. 1–96. 
  18. W. Kohnen, Newforms of half integral weight. J. reine angew. Math. 333 (1982), 32–72. Zbl0475.10025MR660784
  19. W. Kohnen and D. Zagier, Values of L -series of modular forms at the center of the critical strip. Invent. Math. 64 (1981), 175–198. Zbl0468.10015MR629468
  20. J. Oesterlé, Nombres de classes des corps quadratiques imaginaires. Astérique 121-122 (1985), 309–323. Zbl0551.12003MR768967
  21. O. T. O’Meara, Introduction to quadratic forms. Classics in Mathematics, Springer-Verlag, Berlin, 2000, Reprint of the 1973 edition. Zbl1034.11003MR1754311
  22. K. Ono, Web of modularity: Arithmetic of the coefficients of modular forms and q -series. CBMS Regional Conference Series in Mathematics, no. 102, Amer. Math. Soc., Providence, RI, 2003. Zbl1119.11026MR2020489
  23. K. Ono and K. Soundarajan, Ramanujan’s ternary quadratic form. Invent. Math. 130 (1997), 415–454. Zbl0930.11022MR1483991
  24. A. Pizer, An algorithm for compute modular forms on Γ 0 ( N ) . J. Algebra 64 (1980), no. 2, 340–390. Zbl0433.10012MR579066
  25. R. Schulze-Pillot, Darstellungsmaße von Spinorgeschlechtern ternärer quadratischer Formen. J. Reine Angew. Math., 352 (1984), 114–132. Zbl0533.10016MR758697
  26. G. Shimura, On modular forms of half integer weight. Ann. of Math. 97 (1973), 440–481. Zbl0266.10022MR332663
  27. C. Siegel, Über die klassenzahl quadratischer zahlkorper. Acta Arith. 1 (1935), 83–86. Zbl61.0170.02
  28. J. Silverman, The arithmetic of elliptic curves. Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original. Zbl0585.14026MR1329092
  29. W. Stein, Explicit approaches to modular abelian varieties. Ph.D. thesis, University of California, Berkeley (2000), pp. 1–96. 
  30. —, Modular forms, a computational approach. Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007, Appendix by P. Gunnells. Zbl1110.11015MR2289048
  31. J. Sturm, On the congruence of modular forms. Number theory (New York, 1984–1985), Springer, Berlin, 1987, pp. 275–280. Zbl0615.10035MR894516
  32. M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980. Zbl0422.12008MR580949
  33. M. Watkins, Class numbers of imaginary quadratic fields. Math. Comp. 73 (2004), 907–938. Zbl1050.11095MR2031415

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.