Wintenberger’s functor for abelian extensions
- [1] Department of Mathematics University of Florida Gainesville, FL 32611 USA
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 665-678
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKeating, Kevin. "Wintenberger’s functor for abelian extensions." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 665-678. <http://eudml.org/doc/10903>.
@article{Keating2009,
abstract = {Let $k$ be a finite field. Wintenberger used the field of norms to give an equivalence between a category whose objects are totally ramified abelian $p$-adic Lie extensions $E/F$, where $F$ is a local field with residue field $k$, and a category whose objects are pairs $(K,A)$, where $K\cong k((T))$ and $A$ is an abelian $p$-adic Lie subgroup of $\mathrm\{Aut\}_k(K)$. In this paper we extend this equivalence to allow $\mathrm\{Gal\}(E/F)$ and $A$ to be arbitrary abelian pro-$p$ groups.},
affiliation = {Department of Mathematics University of Florida Gainesville, FL 32611 USA},
author = {Keating, Kevin},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ramification; field of norms; extensions of local fields; automorphisms of local fields.},
language = {eng},
number = {3},
pages = {665-678},
publisher = {Université Bordeaux 1},
title = {Wintenberger’s functor for abelian extensions},
url = {http://eudml.org/doc/10903},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Keating, Kevin
TI - Wintenberger’s functor for abelian extensions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 665
EP - 678
AB - Let $k$ be a finite field. Wintenberger used the field of norms to give an equivalence between a category whose objects are totally ramified abelian $p$-adic Lie extensions $E/F$, where $F$ is a local field with residue field $k$, and a category whose objects are pairs $(K,A)$, where $K\cong k((T))$ and $A$ is an abelian $p$-adic Lie subgroup of $\mathrm{Aut}_k(K)$. In this paper we extend this equivalence to allow $\mathrm{Gal}(E/F)$ and $A$ to be arbitrary abelian pro-$p$ groups.
LA - eng
KW - ramification; field of norms; extensions of local fields; automorphisms of local fields.
UR - http://eudml.org/doc/10903
ER -
References
top- K. Keating, Extensions of local fields and truncated power series. J. Number Theory 116 (2006), 69–101. Zbl1161.11407MR2197861
- F. Laubie, Extensions de Lie et groupes d’automorphismes de corps locaux. Compositio Math. 67 (1988), 165–189. Zbl0649.12012MR951749
- F. Laubie, Ramification des groupes abéliens d’automorphismes de . Canad. Math. Bull. 50 (2007), 594–597. Zbl1204.11178MR2364208
- J.-P. Serre, Corps Locaux. Hermann, 1962. MR354618
- J.-P. Wintenberger, Automorphismes des corps locaux de charactéristique . J. Théor. Nombres Bordeaux 16 (2004), 429–456. Zbl1194.11103MR2143563
- J.-P. Wintenberger, Extensions abéliennes et groupes d’automorphismes de corps locaux. C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A201–A203. Zbl0428.12012MR564309
- J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications. Ann. Sci. École Norm. Sup. (4) 16 (1983), 59–89. Zbl0516.12015MR719763
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.