Local Exchange Potentials for Electronic Structure Calculations

Eric Cancès[1]; Gabriel Stoltz[1]; Gustavo E. Scuseria[2]; Viktor N. Staroverov[3]; Ernest R. Davidson[4]

  • [1] Université Paris Est, CERMICS, Project-team Micmac, INRIA-Ecole des Ponts, 6 & 8 Av. Pascal, 77455 Marne-la-Vallée Cedex 2, France
  • [2] Department of Chemistry, Rice University, Houston, Texas 77005, United States of America
  • [3] Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
  • [4] Department of Chemistry, University of Washington, Seattle, Washington 98195, United States of America

MathematicS In Action (2009)

  • Volume: 2, Issue: 1, page 1-42
  • ISSN: 2102-5754

Abstract

top
The Hartree-Fock exchange operator is an integral operator arising in the Hartree-Fock model as well as in some instances of the density functional theory. In a number of applications, it is convenient to approximate this integral operator by a multiplication operator, i.e. by a local potential. This article presents a detailed analysis of the mathematical properties of various local approximations to the nonlocal Hartree-Fock exchange operator including the Slater potential, the optimized effective potential (OEP), the Krieger-Li-Iafrate (KLI) approximation and the common-energy denominator approximation (CEDA) to the OEP, and the effective local potential (ELP). In particular, we show that the Slater, KLI, CEDA and ELP potentials all can be defined as solutions of certain variational problems, and we provide a rigorous derivation of the OEP integral equation. We also establish an existence result for a coupled system of nonlinear partial differential equations introduced by Slater to approximate the Hartree-Fock equations.

How to cite

top

Cancès, Eric, et al. "Local Exchange Potentials for Electronic Structure Calculations." MathematicS In Action 2.1 (2009): 1-42. <http://eudml.org/doc/10914>.

@article{Cancès2009,
abstract = {The Hartree-Fock exchange operator is an integral operator arising in the Hartree-Fock model as well as in some instances of the density functional theory. In a number of applications, it is convenient to approximate this integral operator by a multiplication operator, i.e. by a local potential. This article presents a detailed analysis of the mathematical properties of various local approximations to the nonlocal Hartree-Fock exchange operator including the Slater potential, the optimized effective potential (OEP), the Krieger-Li-Iafrate (KLI) approximation and the common-energy denominator approximation (CEDA) to the OEP, and the effective local potential (ELP). In particular, we show that the Slater, KLI, CEDA and ELP potentials all can be defined as solutions of certain variational problems, and we provide a rigorous derivation of the OEP integral equation. We also establish an existence result for a coupled system of nonlinear partial differential equations introduced by Slater to approximate the Hartree-Fock equations.},
affiliation = {Université Paris Est, CERMICS, Project-team Micmac, INRIA-Ecole des Ponts, 6 & 8 Av. Pascal, 77455 Marne-la-Vallée Cedex 2, France; Université Paris Est, CERMICS, Project-team Micmac, INRIA-Ecole des Ponts, 6 & 8 Av. Pascal, 77455 Marne-la-Vallée Cedex 2, France; Department of Chemistry, Rice University, Houston, Texas 77005, United States of America; Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Chemistry, University of Washington, Seattle, Washington 98195, United States of America},
author = {Cancès, Eric, Stoltz, Gabriel, Scuseria, Gustavo E., Staroverov, Viktor N., Davidson, Ernest R.},
journal = {MathematicS In Action},
keywords = {Hartree-Fock model; Density Functional theory; nonlinear eigenvalue problem; density functional theory},
language = {eng},
number = {1},
pages = {1-42},
publisher = {Société de Mathématiques Appliquées et Industrielles},
title = {Local Exchange Potentials for Electronic Structure Calculations},
url = {http://eudml.org/doc/10914},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Cancès, Eric
AU - Stoltz, Gabriel
AU - Scuseria, Gustavo E.
AU - Staroverov, Viktor N.
AU - Davidson, Ernest R.
TI - Local Exchange Potentials for Electronic Structure Calculations
JO - MathematicS In Action
PY - 2009
PB - Société de Mathématiques Appliquées et Industrielles
VL - 2
IS - 1
SP - 1
EP - 42
AB - The Hartree-Fock exchange operator is an integral operator arising in the Hartree-Fock model as well as in some instances of the density functional theory. In a number of applications, it is convenient to approximate this integral operator by a multiplication operator, i.e. by a local potential. This article presents a detailed analysis of the mathematical properties of various local approximations to the nonlocal Hartree-Fock exchange operator including the Slater potential, the optimized effective potential (OEP), the Krieger-Li-Iafrate (KLI) approximation and the common-energy denominator approximation (CEDA) to the OEP, and the effective local potential (ELP). In particular, we show that the Slater, KLI, CEDA and ELP potentials all can be defined as solutions of certain variational problems, and we provide a rigorous derivation of the OEP integral equation. We also establish an existence result for a coupled system of nonlinear partial differential equations introduced by Slater to approximate the Hartree-Fock equations.
LA - eng
KW - Hartree-Fock model; Density Functional theory; nonlinear eigenvalue problem; density functional theory
UR - http://eudml.org/doc/10914
ER -

References

top
  1. V. Bach, E. H. Lieb, M. Loss, J.-P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory, Phys. Rev. Lett. 72 (1994), 2981-2983 
  2. A. Ben-Haj-Yedder, E. Cancès, C. Le Bris, Mathematical remarks on the optimized effective potential problem, Differential and Integral Equations 17 (2004), 331-368 Zbl1224.35102MR2037981
  3. C. Le Bris, PhD thesis, (1993), Ecole Polytechnique 
  4. E. Cancès, SCF algorithms for Hartree-Fock electronic calculations, Lecture Notes in Chemistry 74 (2001), 17-43 Zbl0992.81103MR1855573
  5. E. Cancès, C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations?, Int. J. Quantum Chem. 79 (2000), 82-90 
  6. E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris, Y. Maday, Computational quantum chemistry: A primer, Handbook of Numerical Analysis (Special volume on computational chemistry) X (2003), 3-270, CiarletP.G.P. Zbl1070.81534MR2008386
  7. E. Cancès, C. Le Bris, On the convergence of the SCF algorithms for the Hartree-Fock equations, Math. Meth. Numer. Anal. 34 (2000), 749-774 Zbl1090.65548MR1784484
  8. E. R. Davidson, Reduced Density Matrices in Quantum Chemistry, (1976), Academic Press, New-York 
  9. E. V. R. de Castro, F. E. Jorge, Accurate universal Gaussian basis set for all atoms of the Periodic Table, J. Chem. Phys. 108 (1998), 5225-5229 
  10. A. P. Gaiduk, V. N. Staroverov, Virial exchange energies from model exact-exchange potentials, J. Chem. Phys. 128 (2008) 
  11. T. Grabo, T. Kreibich, S. Kurth, E. K. U. Gross, Orbital functionals in density functional theory: the optimized effective potential method, Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation (2000), 203-311, AnisimovV.I.V. 
  12. O. V. Gritsenko, E. J. Baerends, Orbital structure of the Kohn-Sham exchange potential and exchange kernel and the field-counteracting potential for molecules in an electric field, Phys. Rev. A 64 (2001) 
  13. A. Görling, A. Hesselmann, M. Jones, M. Levy, Relation between exchange-only optimized potential and Kohn–Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions, J. Chem. Phys. 128 (2008) 
  14. T. Heaton-Burgess, F. A. Bulat, W. Yang, Optimized Effective Potentials in Finite Basis Sets, Phys. Rev. Lett. 98 (2007) 
  15. T. Heaton-Burgess, W. Yang, Optimized effective potentials from arbitrary basis sets, J. Chem. Phys. 129 (2008) 
  16. A. Hesselmann, A. Görling, Comparison between optimized effective potential and Kohn-Sham methods, Chem. Phys. Lett. 455 (2008), 110-119 
  17. A. Hesselmann, A. W. Götz, F. Della Sala, A. Görling, Numerically stable optimized effective potential method with balanced Gaussian basis sets, J. Chem. Phys. 127 (2007) 
  18. A. Holas, M. Cinal, Exact and approximate exchange potentials investigated in terms of their matrix elements with the Kohn-Sham orbitals, Phys. Rev. A 72 (2005) 
  19. S. Ivanov, M. Levy, Connections between ground-state energies from optimized-effective potential exchange-only and Hartree-Fock methods, J. Chem. Phys. 119 (2003), 7087-7093 
  20. A. F. Izmaylov, V. N. Staroverov, G. E. Scuseria, E. R. Davidson, G. Stoltz, E. Cancès, The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques, J. Chem. Phys. 126 (2007) 
  21. Y. Kim, A. Görling, Excitonic Optical Spectrum of Semiconductors Obtained by Time-Dependent Density-Functional Theory with the Exact-Exchange Kernel, Phys. Rev. Lett. 89 (2002) 
  22. C. Kollmar, M. Filatov, Optimized effective potential method: Is it possible to obtain an accurate representation of the response function for finite orbital basis sets?, J. Chem. Phys. 127 (2007) 
  23. J. B. Krieger, Y. Li, G. J. Iafrate, Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory, Phys. Rev. A 45 (1992), 101-126 
  24. K. N. Kudin, G. E. Scuseria, Converging self-consistent field equations in quantum chemistry - recent achievements and remaining challenges, M2AN 41 (2007), 281-296 Zbl1135.81381MR2339629
  25. K. N. Kudin, G. E. Scuseria, E. Cancès, A black-box self-consistent field convergence algorithm: one step closer, J. Chem. Phys. 116 (2002), 8255-8261 
  26. S. Kümmel, L. Kronik, Orbital-dependent density functionals: Theory and applications, Rev. Mod. Phys. 80 (2008), 3-60 Zbl1205.81153MR2390217
  27. S. Kümmel, J. P. Perdew, Simple Iterative Construction of the Optimized Effective Potential for Orbital Functionals, Including Exact Exchange, Phys. Rev. Lett. 90 (2003) 
  28. P. Lax, Functional Analysis, (2002), Wiley-Interscience, New-York Zbl1009.47001MR1892228
  29. R. Van Leeuwen, The Sham-Schlüter Equation in Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 76 (1996), 3610-3613 
  30. E. H. Lieb, Variational principle for many-fermion systems, Phys. Rev. Lett. 46 (1981), 457-459 MR601336
  31. E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quantum Chem. 24 (1983), 243-277 
  32. E. H. Lieb, Bound of the maximum negative ionization of atoms and molecules, Phys. Rev. A 29 (1984), 3018-3028 
  33. E. H. Lieb, B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys. 53 (1977), 185-194 MR452286
  34. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré 1 (1984), 109-145 and 223-283 Zbl0704.49004
  35. P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys. 109 (1987), 33-97 Zbl0618.35111MR879032
  36. M. A. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. U. Gross (Eds.), Time-Dependent Density Functional Theory, (2006), Springer Zbl1110.81002MR2387299
  37. M. Reed, B. Simon, Methods of Modern Mathematical Physics, I - IV (1975-1980), Academic Press Zbl0308.47002MR751959
  38. C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23 (1951), 69-89 Zbl0045.28502
  39. W. Rudin, Real and Complex Analysis, (1987), McGraw-Hill, New-York Zbl0925.00005MR924157
  40. F. Della Sala, A. Görling, Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules, J. Chem. Phys. 115 (2001), 5718-5731 
  41. R. T. Sharp, G. K. Horton, A variational approach to the unipotential many-electron problem, Phys. Rev. 90 (1953) 
  42. J. C. Slater, A simplification of the Hartree-Fock Method, Phys. Rev. 81 (1951), 385-390 Zbl0042.23202
  43. J.-P. Solovej, The ionization conjecture in Hartree-Fock theory, Annals of Math. 158 (2003), 509-576 Zbl1106.81081MR2018928
  44. V. N. Staroverov, G. E. Scuseria, E. R. Davidson, Optimized effective potentiels yielding Hartree-Fock energies and densities, J. Chem. Phys. 124 (2006) 
  45. J. D. Talman, W. F. Shadwick, Optimized effective atomic central potential, Phys. Rev. A 14 (1976), 36-40 
  46. C. A. Ullrich, U. J Gossmann, E. K. U. Gross, Time-Dependent Optimized Effective Potential, Phys. Rev. Lett. 74 (1995), 872-875 
  47. Q. Wu, W. Yang, Algebraic equation and iterative optimization for the optimized effective potential in density functional theory, J. Theor. Comput. Chem. 2 (2003), 627-638 
  48. W. Yang, Q. Wu, Direct method for the optimized effective potentials in density-functional theory, Phys. Rev. Lett. 89 (2002) 
  49. E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, (1986), Springer Zbl0583.47050MR816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.