Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès; Rachida Chakir; Yvon Maday

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2012)

  • Volume: 46, Issue: 2, page 341-388
  • ISSN: 0764-583X

Abstract

top
In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the electronic density, and allows for a comprehensive analysis. This is not the case for the Kohn-Sham LDA model, for which the uniqueness of the ground state electronic density is not guaranteed. We prove that, for any local minimizer Φ 0 of the Kohn-Sham LDA model, and under a coercivity assumption ensuring the local uniqueness of this minimizer up to unitary transform, the discretized Kohn-Sham LDA problem has a minimizer in the vicinity of Φ 0 for large enough energy cut-offs, and that this minimizer is unique up to unitary transform. We then derive optimala priori error estimates for the spectral discretization method.

How to cite

top

Cancès, Eric, Chakir, Rachida, and Maday, Yvon. "Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.2 (2012): 341-388. <http://eudml.org/doc/273250>.

@article{Cancès2012,
abstract = {In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the electronic density, and allows for a comprehensive analysis. This is not the case for the Kohn-Sham LDA model, for which the uniqueness of the ground state electronic density is not guaranteed. We prove that, for any local minimizer $\Phi ^0$ of the Kohn-Sham LDA model, and under a coercivity assumption ensuring the local uniqueness of this minimizer up to unitary transform, the discretized Kohn-Sham LDA problem has a minimizer in the vicinity of $\Phi ^0$ for large enough energy cut-offs, and that this minimizer is unique up to unitary transform. We then derive optimala priori error estimates for the spectral discretization method.},
author = {Cancès, Eric, Chakir, Rachida, Maday, Yvon},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {electronic structure calculation; density functional theory; Thomas-Fermi-von Weizsäcker model; Kohn-Sham model; nonlinear eigenvalue problem; spectral methods; -body Schrödinger equation; approximate solutions; a priori error estimates; Fourier discretization; molecular simulations},
language = {eng},
number = {2},
pages = {341-388},
publisher = {EDP-Sciences},
title = {Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models},
url = {http://eudml.org/doc/273250},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Cancès, Eric
AU - Chakir, Rachida
AU - Maday, Yvon
TI - Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 2
SP - 341
EP - 388
AB - In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the electronic density, and allows for a comprehensive analysis. This is not the case for the Kohn-Sham LDA model, for which the uniqueness of the ground state electronic density is not guaranteed. We prove that, for any local minimizer $\Phi ^0$ of the Kohn-Sham LDA model, and under a coercivity assumption ensuring the local uniqueness of this minimizer up to unitary transform, the discretized Kohn-Sham LDA problem has a minimizer in the vicinity of $\Phi ^0$ for large enough energy cut-offs, and that this minimizer is unique up to unitary transform. We then derive optimala priori error estimates for the spectral discretization method.
LA - eng
KW - electronic structure calculation; density functional theory; Thomas-Fermi-von Weizsäcker model; Kohn-Sham model; nonlinear eigenvalue problem; spectral methods; -body Schrödinger equation; approximate solutions; a priori error estimates; Fourier discretization; molecular simulations
UR - http://eudml.org/doc/273250
ER -

References

top
  1. [1] A. Anantharaman and E. Cancès, Existence of minimizers for Kohn-Sham models in quantum chemistry. Ann. Inst. Henri Poincaré26 (2009) 2425–2455. Zbl1186.81138MR2569902
  2. [2] R. Benguria, H. Brezis and E.H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm. Math. Phys.79 (1981) 167–180. Zbl0478.49035MR612246
  3. [3] X. Blanc and E. Cancès, Nonlinear instability of density-independent orbital-free kinetic energy functionals. J. Chem. Phys.122 (2005) 214–106. 
  4. [4] M. Born and J.R. Oppenheimer, Zur quantentheorie der molekeln. Ann. Phys.84 (1927) 457–484. Zbl53.0845.04JFM53.0845.04
  5. [5] G. Bourdaud and M. Lanza de Cristoforis, Regularity of the symbolic calculus in Besov algebras. Stud. Math.184 (2008) 271–298. Zbl1139.46030MR2369144
  6. [6] E. Cancès, R. Chakir and Y. Maday, Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput.45 (2010) 90–117. Zbl1203.65237MR2679792
  7. [7] E. Cancès, R. Chakir, V. Ehrlacher and Y. Maday, in preparation. 
  8. [8] E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry: a primer, in Handbook of numerical analysis X. North-Holland, Amsterdam (2003) 3–270. Zbl1070.81534MR2008386
  9. [9] E. Cancès, C. Le Bris and Y. Maday, Méthodes mathématiques en chimie quantique. Springer (2006). MR2426947
  10. [10] E. Cancès, G. Stoltz, V.N. Staroverov, G.E. Scuseria and E.R. Davidson, Local exchange potentials for electronic structure calculations. MathematicS In Action2 (2009) 1–42. Zbl1177.47092MR2520849
  11. [11] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods: fundamentals in single domains. Springer (2006). Zbl1121.76001MR2223552
  12. [12] I. Catto, C. Le Bris and P.-L. Lions, Mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford University Press (1998). Zbl0938.81001MR1673212
  13. [13] H. Chen, X. Gong, L. He and A. Zhou, Convergence of adaptive finite element approximations for nonlinear eigenvalue problems. arXiv preprint, http://arxiv.org/pdf/1001.2344. 
  14. [14] H. Chen, X. Gong and A. Zhou, Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model. Math. Methods Appl. Sci.33 (2010) 1723–1742. Zbl1194.35293MR2723492
  15. [15] R.M. Dreizler and E.K.U. Gross, Density functional theory. Springer (1990). Zbl0723.70002
  16. [16] A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl.20 (1998) 303–353. Zbl0928.65050MR1646856
  17. [17] V. Gavini, J. Knap, K. Bhattacharya and M. Ortiz, Non-periodic finite-element formulation of orbital-free density functional theory. J. Mech. Phys. Solids55 (2007) 669–696. Zbl1162.74461MR2318929
  18. [18] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 3rd edition. Springer (1998). Zbl1042.35002
  19. [19] X. Gonze et al., ABINIT: first-principles approach to material and nanosystem properties. Computer Phys. Comm.180 (2009) 2582–2615. 
  20. [20] P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864–B871. MR180312
  21. [21] W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133–A1138. MR189732
  22. [22] B. Langwallner, C. Ortner and E. Süli, Existence and convergence results for the Galerkin approximation of an electronic density functional. Math. Mod. Methods Appl. Sci.20 (2010) 2237–2265. Zbl1208.82063MR2755499
  23. [23] C. Le Bris, Ph.D. thesis, École Polytechnique (1993). 
  24. [24] W.A. Lester Jr. Ed., Recent advances in Quantum Monte Carlo methods. World Sientific (1997). Zbl1109.81008
  25. [25] W.A. Lester Jr., S.M. Rothstein and S. Tanaka Eds., Recent advances in Quantum Monte Carlo methods, Part II, World Sientific (2002). 
  26. [26] M. Levy, Universal variational functionals of electron densities, first order density matrices, and natural spin-orbitals and solution of the V-representability problem. Proc. Natl. Acad. Sci. U.S.A.76 (1979) 6062–6065. MR554891
  27. [27] E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53 (1981) 603–641. Zbl1114.81336MR629207
  28. [28] E.H. Lieb, Density Functional for Coulomb systems. Int. J. Quant. Chem.24 (1983) 243–277. 
  29. [29] Y. Maday and G. Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math.94 (2003) 739–770. Zbl1027.81043MR1990591
  30. [30] W. Sickel, Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ. 27 (1992) 481–497. Zbl0792.47062MR1205849
  31. [31] P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya and M. Ortiz, Non-periodic finite-element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids58 (2010) 256–280. Zbl1193.81006MR2649224
  32. [32] N. Troullier and J.L. Martins, A straightforward method for generating soft transferable pseudopotentials. Solid State Commun.74 (1990) 613–616. 
  33. [33] S. Valone, Consequences of extending 1matrix energy functionals from purestate representable to all ensemble representable 1 matrices. J. Chem. Phys.73 (1980) 1344–1349. MR580595
  34. [34] Y.A. Wang and E.A. Carter, Orbital-free kinetic energy density functional theory, in Theoretical methods in condensed phase chemistry, Progress in theoretical chemistry and physics 5. Kluwer (2000) 117–184. 
  35. [35] A. Zhou, Finite dimensional approximations for the electronic ground state solution of a molecular system. Math. Methods Appl. Sci.30 (2007) 429–447. Zbl1119.35095MR2293570

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.