Propriété de Banach-Saks et modèles étalés

B. Beauzamy

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1977-1978)

  • page 1-16

How to cite

top

Beauzamy, B.. "Propriété de Banach-Saks et modèles étalés." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1977-1978): 1-16. <http://eudml.org/doc/109187>.

@article{Beauzamy1977-1978,
author = {Beauzamy, B.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
language = {fre},
pages = {1-16},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Propriété de Banach-Saks et modèles étalés},
url = {http://eudml.org/doc/109187},
year = {1977-1978},
}

TY - JOUR
AU - Beauzamy, B.
TI - Propriété de Banach-Saks et modèles étalés
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1977-1978
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/109187
ER -

References

top
  1. [1] A. Baernstein, On reflexivity and summability, Studia Math.42, p. 91-94 (1972). Zbl0206.42104MR305044
  2. [2] B. Beauzamy, Espaces de Banach uniformément convexifiables, Exposés XIII et XIV, Séminaire Maurey-Schwartz1973/74, Ecole Polytechnique, Paris. Zbl0295.46023MR407565
  3. [3] B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math.57, 2, p. 103-159 (1976). Zbl0372.46016MR430844
  4. [4] A. Brunel, Espaces associés à une suite bornée dans un espace de Banach, Exposés Nos XV, XVI et XVIII, Séminaire Maurey-Schwartz1973/74, Ecole Polytechnique, Paris. 
  5. [5] A. Brunel et L. Sucheston, On B-convex spaces, Math. System Theory, vol. 7. Zbl0323.46018MR438085
  6. [6] P. Erdös et M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. of the A.M.S., 59, 2 (1976). Zbl0355.40007MR430596
  7. [7] F. Galvin et K. Prikry, Borel sets and Ramsey's theorem, J. of Symbolic logic, 38, p. 193-198 (1973). Zbl0276.04003MR337630
  8. [8] R.C. James, Weak compactness and reflexivity, Israël J. of Maths.2, p. 101-119 (1964). Zbl0127.32502MR176310
  9. [9] S. Kakutani, Weak convergence in uniformly convex Banach spaces, Tohuku Math. J.45, p. 188-193 (1938). Zbl64.0369.01JFM64.0369.01
  10. [10] H.P. Rosenthal, A characterization of Banach spaces containing l1, Proceedings N.A.S. des U.S.A., vol. 71, 6, p. 2411-2413, (June 1974). Zbl0297.46013MR358307
  11. [11] H.P. Rosenthal, Weakly independent sequences and the Banach-Saks property, Proceedings of the Durham Symposium on the relations between infinite dimensional and finite-dimensional convexity, (July 1975). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.