# The Role of Green’s Functions in Inverse Scattering at Fixed Energy

James Ralston^{[1]}

- [1] UCLA

Séminaire Équations aux dérivées partielles (1996-1997)

- Volume: 1996-1997, page 1-5

## Access Full Article

top## How to cite

topRalston, James. "The Role of Green’s Functions in Inverse Scattering at Fixed Energy." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-5. <http://eudml.org/doc/10919>.

@article{Ralston1996-1997,

affiliation = {UCLA},

author = {Ralston, James},

journal = {Séminaire Équations aux dérivées partielles},

language = {eng},

pages = {1-5},

publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},

title = {The Role of Green’s Functions in Inverse Scattering at Fixed Energy},

url = {http://eudml.org/doc/10919},

volume = {1996-1997},

year = {1996-1997},

}

TY - JOUR

AU - Ralston, James

TI - The Role of Green’s Functions in Inverse Scattering at Fixed Energy

JO - Séminaire Équations aux dérivées partielles

PY - 1996-1997

PB - Centre de mathématiques Laurent Schwartz, École polytechnique

VL - 1996-1997

SP - 1

EP - 5

LA - eng

UR - http://eudml.org/doc/10919

ER -

## References

top- Agmon,S. “Spectral properties of Schrödinger operators”, Annali di Pisa, Serie IV, 2, 151-218(1975) Zbl0315.47007
- Eskin, G., Ralston, J. “Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy”,Commun. Math. Phys. 173, 199-224(1995) Zbl0843.35133
- Faddeev, L.D. “The inverse problem of quantum scattering II”, J. Sov. Math. 5, 334-396(1976) Zbl0373.35014
- Hörmander, L. “Uniqueness theorems for second order differential equations”, C.P.D.E.8, 21-64(1983) Zbl0546.35023
- Isozaki, H. “Multi-dimensional inverse scattering theory for Schrödinger operators”, Reviews in Math. Phys. 8, 591-622(1996) Zbl0859.35083
- Nakamura, G., Uhlmann, G. “Global uniqueness for an inverse boundary value problem arising in elasticity”, Invent. Math. 118, 457-474(1994) Zbl0814.35147
- Nakamura, G., Sun, Z., Uhlmann, G. “Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field”, Math. Ann. 303,377-388(1995) Zbl0843.35134
- Novikov, R,G, “The inverse scattering problem at fixed energy for the three dimensional Schrödinger operator with an exponentially decreasing potential”, Commun Math, Phys. 161 569-595(1994) Zbl0803.35166
- Sun, Z. “An inverse boundary value problem for Schrödinger operator with vector potentials, Trans. AMS 338(2), 953-969(1993) Zbl0795.35143

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.