The Role of Green’s Functions in Inverse Scattering at Fixed Energy

James Ralston[1]

  • [1] UCLA

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-5

How to cite

top

Ralston, James. "The Role of Green’s Functions in Inverse Scattering at Fixed Energy." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-5. <http://eudml.org/doc/10919>.

@article{Ralston1996-1997,
affiliation = {UCLA},
author = {Ralston, James},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-5},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The Role of Green’s Functions in Inverse Scattering at Fixed Energy},
url = {http://eudml.org/doc/10919},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Ralston, James
TI - The Role of Green’s Functions in Inverse Scattering at Fixed Energy
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 5
LA - eng
UR - http://eudml.org/doc/10919
ER -

References

top
  1. Agmon,S. “Spectral properties of Schrödinger operators”, Annali di Pisa, Serie IV, 2, 151-218(1975) Zbl0315.47007
  2. Eskin, G., Ralston, J. “Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy”,Commun. Math. Phys. 173, 199-224(1995) Zbl0843.35133
  3. Faddeev, L.D. “The inverse problem of quantum scattering II”, J. Sov. Math. 5, 334-396(1976) Zbl0373.35014
  4. Hörmander, L. “Uniqueness theorems for second order differential equations”, C.P.D.E.8, 21-64(1983) Zbl0546.35023
  5. Isozaki, H. “Multi-dimensional inverse scattering theory for Schrödinger operators”, Reviews in Math. Phys. 8, 591-622(1996) Zbl0859.35083
  6. Nakamura, G., Uhlmann, G. “Global uniqueness for an inverse boundary value problem arising in elasticity”, Invent. Math. 118, 457-474(1994) Zbl0814.35147
  7. Nakamura, G., Sun, Z., Uhlmann, G. “Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field”, Math. Ann. 303,377-388(1995) Zbl0843.35134
  8. Novikov, R,G, “The inverse scattering problem at fixed energy for the three dimensional Schrödinger operator with an exponentially decreasing potential”, Commun Math, Phys. 161 569-595(1994) Zbl0803.35166
  9. Sun, Z. “An inverse boundary value problem for Schrödinger operator with vector potentials, Trans. AMS 338(2), 953-969(1993) Zbl0795.35143

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.