Inverse scattering problems in several dimensions
Gregory Eskin, James Ralston (1993)
Journées équations aux dérivées partielles
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Gregory Eskin, James Ralston (1993)
Journées équations aux dérivées partielles
Similarity:
Anders Melin (1991)
Journées équations aux dérivées partielles
Similarity:
M. Jaulent (1972)
Annales de l'I.H.P. Physique théorique
Similarity:
R. Weder (1994-1995)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Emmanuel Jalade (2004)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Anna Kazeykina (2013)
Journées Équations aux dérivées partielles
Similarity:
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.