Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires
- [1] Université d’Orléans et CNRS, UMR 6628, Département de Mathématiques, BP 6759, 45067 Orléans cedex 2, France
Séminaire Équations aux dérivées partielles (1996-1997)
- Volume: 1996-1997, page 1-12
Access Full Article
topAbstract
topHow to cite
topBouchut, François. "Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-12. <http://eudml.org/doc/10922>.
@article{Bouchut1996-1997,
abstract = {On montre comment le formalisme introduit récemment par l’auteur et Benoît Perthame permet de justifier la plupart des estimations d’erreurs pour des solutions approchées d’une loi de conservation scalaire.},
affiliation = {Université d’Orléans et CNRS, UMR 6628, Département de Mathématiques, BP 6759, 45067 Orléans cedex 2, France},
author = {Bouchut, François},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {error estimates; Kruzhkov solutions},
language = {fre},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires},
url = {http://eudml.org/doc/10922},
volume = {1996-1997},
year = {1996-1997},
}
TY - JOUR
AU - Bouchut, François
TI - Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 12
AB - On montre comment le formalisme introduit récemment par l’auteur et Benoît Perthame permet de justifier la plupart des estimations d’erreurs pour des solutions approchées d’une loi de conservation scalaire.
LA - fre
KW - error estimates; Kruzhkov solutions
UR - http://eudml.org/doc/10922
ER -
References
top- F. Bouchut, Ch. Bourdarias, B. Perthame, A MUSCL method satisfying all the numerical entropy inequalities, Math. Comp. 65 (1996), 1439-1461. Zbl0853.65091MR1348038
- F. Bouchut, B. Perthame, Kružkov’s estimates for scalar conservation laws revisited, à paraî tre dans Trans. of the A.M.S. Zbl0955.65069
- Y. Brenier, Résolution d’équations d’évolution quasilinéaires en dimension N d’espace à l’aide d’équations linéaires en dimension , J. Diff. Eq. 50 (1983), 375-390. Zbl0549.35055
- S. Champier, T. Gallouët, R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh, Numer. Math. 66 (1993), 139-157. Zbl0801.65089MR1245008
- B. Cockburn, F. Coquel, P. Le Floch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp. 63 (1994), 77-103. Zbl0855.65103MR1240657
- B. Cockburn, P.-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part I : The general approach, Math. Comp. 65 (1996), 533-573. Zbl0848.65067MR1333308
- B. Cockburn, P.-A. Gremaud, Error estimates for finite element methods for scalar conservation laws, SIAM J. Numer. Anal. 33 (1996), 522-554. Zbl0861.65077MR1388487
- B. Cockburn, P.-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular cartesian grids, prépublication. Zbl0866.65061
- R. Eymard, T. Gallouët, R. Herbin, The finite volume method, book to appear, « Handbook of Numerical Analysis », Ph. Ciarlet and J.L. Lions eds. Zbl0981.65095MR1804748
- E. Godlewski, P.-A. Raviart, Hyperbolic systems of conservation laws, Coll. Math. et Appl., Ellipses, Paris (1991). Zbl0768.35059MR1304494
- D. Hoff, The sharp form of Oleinik’s entropy condition in several space variables, Trans. of the A.M.S. 276 (1983), 707-714. Zbl0528.35062
- G. Jiang, C.-W. Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comp. 62 (1994), 531-538. Zbl0801.65098MR1223232
- S.N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 10 (1970), 217-243. Zbl0215.16203
- N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comp. Math. and Math. Phys. 16 (1976), 105-119. Zbl0381.35015
- P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957), 537-566. Zbl0081.08803MR93653
- B.J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), 59-69. Zbl0592.65062MR815831
- H. Nessyahu, E. Tadmor, T. Tassa, The convergence rate of Godunov type schemes, SIAM J. Num. Anal. 31 (1994), 1-16. Zbl0799.65096MR1259963
- O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95-172. Zbl0131.31803MR151737
- O.A. Oleinik, On the uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, A.M.S. Transl. (2) 33 (1963), 285-290. Zbl0132.33303
- S. Osher, E. Tadmor, On the convergence of difference approximations to scalar conservation laws, Math. of Comp. 50 (1988), 19-51. Zbl0637.65091MR917817
- B. Perthame, Convergence of N-schemes for linear advection equations, Trends in Applications of Mathematics to Mechanics, Pitman M SPAM77, New-York (1995). Zbl0861.76071MR1475496
- R. Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp. 40 (1983), 91-106. Zbl0533.65061MR679435
- D. Serre, Systèmes de lois de conservation I et II, Diderot ed., Paris (1996). MR1459988
- J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, N.Y. (1983). Zbl0807.35002MR688146
- A. Szepessy, Convergence of a shock-capturing streamline diffusion finite element method for scalar conservation laws in two space dimensions, Math. Comp. (1989), 527-545. Zbl0679.65072MR979941
- E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Num. Anal. 28 (1991), 891-906. Zbl0732.65084MR1111445
- T. Tang, Z.-H. Teng, The sharpness of Kuznetsov’s -error estimate for monotone difference schemes, Math. Comp. 64 (1995), 581-589. Zbl0845.65053
- J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws I. Explicite monotone schemes, Math. Modeling and Num. Anal. 28 (1994), 267-295. Zbl0823.65087MR1275345
- A.I. Vol’pert, The spaces BV and quasilinear equations, Math. USSR-Sbornik 2 (1967), 225-267. Zbl0168.07402
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.