Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires

François Bouchut[1]

  • [1] Université d’Orléans et CNRS, UMR 6628, Département de Mathématiques, BP 6759, 45067 Orléans cedex 2, France

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-12

Abstract

top
On montre comment le formalisme introduit récemment par l’auteur et Benoît Perthame permet de justifier la plupart des estimations d’erreurs pour des solutions approchées d’une loi de conservation scalaire.

How to cite

top

Bouchut, François. "Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-12. <http://eudml.org/doc/10922>.

@article{Bouchut1996-1997,
abstract = {On montre comment le formalisme introduit récemment par l’auteur et Benoît Perthame permet de justifier la plupart des estimations d’erreurs pour des solutions approchées d’une loi de conservation scalaire.},
affiliation = {Université d’Orléans et CNRS, UMR 6628, Département de Mathématiques, BP 6759, 45067 Orléans cedex 2, France},
author = {Bouchut, François},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {error estimates; Kruzhkov solutions},
language = {fre},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires},
url = {http://eudml.org/doc/10922},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Bouchut, François
TI - Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 12
AB - On montre comment le formalisme introduit récemment par l’auteur et Benoît Perthame permet de justifier la plupart des estimations d’erreurs pour des solutions approchées d’une loi de conservation scalaire.
LA - fre
KW - error estimates; Kruzhkov solutions
UR - http://eudml.org/doc/10922
ER -

References

top
  1. F. Bouchut, Ch. Bourdarias, B. Perthame, A MUSCL method satisfying all the numerical entropy inequalities, Math. Comp. 65 (1996), 1439-1461. Zbl0853.65091MR1348038
  2. F. Bouchut, B. Perthame, Kružkov’s estimates for scalar conservation laws revisited, à paraî tre dans Trans. of the A.M.S. Zbl0955.65069
  3. Y. Brenier, Résolution d’équations d’évolution quasilinéaires en dimension N d’espace à l’aide d’équations linéaires en dimension N + 1 , J. Diff. Eq. 50 (1983), 375-390. Zbl0549.35055
  4. S. Champier, T. Gallouët, R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh, Numer. Math. 66 (1993), 139-157. Zbl0801.65089MR1245008
  5. B. Cockburn, F. Coquel, P. Le Floch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp. 63 (1994), 77-103. Zbl0855.65103MR1240657
  6. B. Cockburn, P.-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part I : The general approach, Math. Comp. 65 (1996), 533-573. Zbl0848.65067MR1333308
  7. B. Cockburn, P.-A. Gremaud, Error estimates for finite element methods for scalar conservation laws, SIAM J. Numer. Anal. 33 (1996), 522-554. Zbl0861.65077MR1388487
  8. B. Cockburn, P.-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular cartesian grids, prépublication. Zbl0866.65061
  9. R. Eymard, T. Gallouët, R. Herbin, The finite volume method, book to appear, « Handbook of Numerical Analysis », Ph. Ciarlet and J.L. Lions eds. Zbl0981.65095MR1804748
  10. E. Godlewski, P.-A. Raviart, Hyperbolic systems of conservation laws, Coll. Math. et Appl., Ellipses, Paris (1991). Zbl0768.35059MR1304494
  11. D. Hoff, The sharp form of Oleinik’s entropy condition in several space variables, Trans. of the A.M.S. 276 (1983), 707-714. Zbl0528.35062
  12. G. Jiang, C.-W. Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comp. 62 (1994), 531-538. Zbl0801.65098MR1223232
  13. S.N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 10 (1970), 217-243. Zbl0215.16203
  14. N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comp. Math. and Math. Phys. 16 (1976), 105-119. Zbl0381.35015
  15. P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957), 537-566. Zbl0081.08803MR93653
  16. B.J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), 59-69. Zbl0592.65062MR815831
  17. H. Nessyahu, E. Tadmor, T. Tassa, The convergence rate of Godunov type schemes, SIAM J. Num. Anal. 31 (1994), 1-16. Zbl0799.65096MR1259963
  18. O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95-172. Zbl0131.31803MR151737
  19. O.A. Oleinik, On the uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, A.M.S. Transl. (2) 33 (1963), 285-290. Zbl0132.33303
  20. S. Osher, E. Tadmor, On the convergence of difference approximations to scalar conservation laws, Math. of Comp. 50 (1988), 19-51. Zbl0637.65091MR917817
  21. B. Perthame, Convergence of N-schemes for linear advection equations, Trends in Applications of Mathematics to Mechanics, Pitman M SPAM77, New-York (1995). Zbl0861.76071MR1475496
  22. R. Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp. 40 (1983), 91-106. Zbl0533.65061MR679435
  23. D. Serre, Systèmes de lois de conservation I et II, Diderot ed., Paris (1996). MR1459988
  24. J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, N.Y. (1983). Zbl0807.35002MR688146
  25. A. Szepessy, Convergence of a shock-capturing streamline diffusion finite element method for scalar conservation laws in two space dimensions, Math. Comp. (1989), 527-545. Zbl0679.65072MR979941
  26. E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Num. Anal. 28 (1991), 891-906. Zbl0732.65084MR1111445
  27. T. Tang, Z.-H. Teng, The sharpness of Kuznetsov’s O ( Δ x ) L 1 -error estimate for monotone difference schemes, Math. Comp. 64 (1995), 581-589. Zbl0845.65053
  28. J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws I. Explicite monotone schemes, Math. Modeling and Num. Anal. 28 (1994), 267-295. Zbl0823.65087MR1275345
  29. A.I. Vol’pert, The spaces BV and quasilinear equations, Math. USSR-Sbornik 2 (1967), 225-267. Zbl0168.07402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.