Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes

J.-P. Vila

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 3, page 267-295
  • ISSN: 0764-583X

How to cite

top

Vila, J.-P.. "Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.3 (1994): 267-295. <http://eudml.org/doc/193739>.

@article{Vila1994,
author = {Vila, J.-P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multidimensional; convergence; finite volume schemes; scalar conservation laws; monotone scheme; error estimate},
language = {eng},
number = {3},
pages = {267-295},
publisher = {Dunod},
title = {Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes},
url = {http://eudml.org/doc/193739},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Vila, J.-P.
TI - Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 3
SP - 267
EP - 295
LA - eng
KW - multidimensional; convergence; finite volume schemes; scalar conservation laws; monotone scheme; error estimate
UR - http://eudml.org/doc/193739
ER -

References

top
  1. [1] S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical viscosity, entropy condition and convergence of finite volume scheme for general multidimensional conservation laws, Taormina, 1992. Zbl0964.65531MR1262348
  2. [2] S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear SIAM Journal, on Num. Ana., 1994. Zbl0865.35082MR1335655
  3. [3] B. COCKBURN, F. COQUEL, P. LE FLOCH, C. W. SHU, Convergence of finite volume methods, Preprint, 1991. 
  4. [4] F. COQUE, P. LE FLOCH, Convergence of finite difference schemes for conservation laws in several space dimensions : the corrected antidiffusion flux approach, RI École polytechnique 210, 1990. Zbl0741.35036MR1046532
  5. [5] S. CHAMPIER, T. GALLOUET, Convergence d'un schéma décentré amont pour une équation hyperbolique linéaire sur un maillage triangulaire, to appear M2AN. Zbl0772.65065
  6. [6] S. CHAMPIER, T. GALLOUET, R. HERBIN, Convergence of an upstream finite volume scheme for a non linear hyperbolic equation on a triangular mesh, Preprint, Université de Savoie, 1991. Zbl0801.65089MR1245008
  7. [7] M. CRANDALL, A. MAJDA, Monotone Difference Approximations for Scalar Conservation Laws, Math. of Comp., 1980, 34, 149, pp. 1-21. Zbl0423.65052MR551288
  8. [8] B. COCKBURN, On the continuity in BV (Ω) of the L2 projection into finite element spaces, Preprint 90-1, Army High performance comp. res. center Univ. Minnesota. MR1094943
  9. [9] M. CRANDALL, L. TARTAR, Some relations beetween nonexpansive and order preserving mappings, Proc. A.M.S., 78, pp. 385-390, 1980. Zbl0449.47059MR553381
  10. [10] R. J. DIPERNA, Measure-valued solution to conservation laws, Arch. Rat. Mech. Anal., 1985, 88, pp. 223-270. Zbl0616.35055MR775191
  11. [11] C. JOHNSON, J. PITKARANKA, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. of Comp., 1984, 47, pp. 285-312. 
  12. [12] N. N. KUZNETSOV, Accuracy of some approximate methods for computing the weak solution of a first order quasi-linear equation, USSR Comp. Math. and Math. Phys., 1976, 16, pp. 105-119. Zbl0381.35015
  13. [13] N. N. KUZNETSOV, S. A. VOLOSIN, On monotone difference approximations for a first order quasilinear equation, Soviet Math. Dokl., 1976, v. 17, pp. 1203-1206. Zbl0361.65082
  14. [14] S. N. KRUZKOV, First order quasilinear equations in several independent variables, Math. USSR Sbornik, 1970, 10, pp. 217-243. Zbl0215.16203
  15. [15] P. D. LAX, Shock waves and entropy Contributions to non linear Functional analysis, ed. E. A. Zarantonello, Academic press, 1971. Zbl0268.35014MR367471
  16. [16] S. OSHER, Riemann solvers, the entropy condition and difference approximations, Siam. Jour. num. anal., 1984. Zbl0592.65069MR736327
  17. [17] A. SZEPESSI, Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions, RAIRO Model. Math. Anal. Numer., 1991, 25, pp. 749-783. Zbl0751.65061MR1135992
  18. [18] E. TADMOR, Numerical viscosity and the entropy condition, Math. of Comp., 1984, 43, pp. 369-381. Zbl0587.65058MR758189

Citations in EuDML Documents

top
  1. Serge Piperno, L 2 -stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
  2. Serge Piperno, -stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
  3. Loula Fezoui, Stéphane Lanteri, Stéphanie Lohrengel, Serge Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
  4. François Bouchut, Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires
  5. Loula Fezoui, Stéphane Lanteri, Stéphanie Lohrengel, Serge Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
  6. Sébastien Martin, Julien Vovelle, Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function
  7. Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
  8. Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
  9. Mario Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
  10. Mario Ohlberger, error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.