Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes
- Volume: 28, Issue: 3, page 267-295
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVila, J.-P.. "Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.3 (1994): 267-295. <http://eudml.org/doc/193739>.
@article{Vila1994,
author = {Vila, J.-P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multidimensional; convergence; finite volume schemes; scalar conservation laws; monotone scheme; error estimate},
language = {eng},
number = {3},
pages = {267-295},
publisher = {Dunod},
title = {Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes},
url = {http://eudml.org/doc/193739},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Vila, J.-P.
TI - Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 3
SP - 267
EP - 295
LA - eng
KW - multidimensional; convergence; finite volume schemes; scalar conservation laws; monotone scheme; error estimate
UR - http://eudml.org/doc/193739
ER -
References
top- [1] S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical viscosity, entropy condition and convergence of finite volume scheme for general multidimensional conservation laws, Taormina, 1992. Zbl0964.65531MR1262348
- [2] S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear SIAM Journal, on Num. Ana., 1994. Zbl0865.35082MR1335655
- [3] B. COCKBURN, F. COQUEL, P. LE FLOCH, C. W. SHU, Convergence of finite volume methods, Preprint, 1991.
- [4] F. COQUE, P. LE FLOCH, Convergence of finite difference schemes for conservation laws in several space dimensions : the corrected antidiffusion flux approach, RI École polytechnique 210, 1990. Zbl0741.35036MR1046532
- [5] S. CHAMPIER, T. GALLOUET, Convergence d'un schéma décentré amont pour une équation hyperbolique linéaire sur un maillage triangulaire, to appear M2AN. Zbl0772.65065
- [6] S. CHAMPIER, T. GALLOUET, R. HERBIN, Convergence of an upstream finite volume scheme for a non linear hyperbolic equation on a triangular mesh, Preprint, Université de Savoie, 1991. Zbl0801.65089MR1245008
- [7] M. CRANDALL, A. MAJDA, Monotone Difference Approximations for Scalar Conservation Laws, Math. of Comp., 1980, 34, 149, pp. 1-21. Zbl0423.65052MR551288
- [8] B. COCKBURN, On the continuity in BV (Ω) of the L2 projection into finite element spaces, Preprint 90-1, Army High performance comp. res. center Univ. Minnesota. MR1094943
- [9] M. CRANDALL, L. TARTAR, Some relations beetween nonexpansive and order preserving mappings, Proc. A.M.S., 78, pp. 385-390, 1980. Zbl0449.47059MR553381
- [10] R. J. DIPERNA, Measure-valued solution to conservation laws, Arch. Rat. Mech. Anal., 1985, 88, pp. 223-270. Zbl0616.35055MR775191
- [11] C. JOHNSON, J. PITKARANKA, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. of Comp., 1984, 47, pp. 285-312.
- [12] N. N. KUZNETSOV, Accuracy of some approximate methods for computing the weak solution of a first order quasi-linear equation, USSR Comp. Math. and Math. Phys., 1976, 16, pp. 105-119. Zbl0381.35015
- [13] N. N. KUZNETSOV, S. A. VOLOSIN, On monotone difference approximations for a first order quasilinear equation, Soviet Math. Dokl., 1976, v. 17, pp. 1203-1206. Zbl0361.65082
- [14] S. N. KRUZKOV, First order quasilinear equations in several independent variables, Math. USSR Sbornik, 1970, 10, pp. 217-243. Zbl0215.16203
- [15] P. D. LAX, Shock waves and entropy Contributions to non linear Functional analysis, ed. E. A. Zarantonello, Academic press, 1971. Zbl0268.35014MR367471
- [16] S. OSHER, Riemann solvers, the entropy condition and difference approximations, Siam. Jour. num. anal., 1984. Zbl0592.65069MR736327
- [17] A. SZEPESSI, Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions, RAIRO Model. Math. Anal. Numer., 1991, 25, pp. 749-783. Zbl0751.65061MR1135992
- [18] E. TADMOR, Numerical viscosity and the entropy condition, Math. of Comp., 1984, 43, pp. 369-381. Zbl0587.65058MR758189
Citations in EuDML Documents
top- Serge Piperno, -stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
- Serge Piperno, -stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
- Loula Fezoui, Stéphane Lanteri, Stéphanie Lohrengel, Serge Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
- François Bouchut, Un formalisme pour les estimations de type Kružkov pour les lois de conservation scalaires
- Loula Fezoui, Stéphane Lanteri, Stéphanie Lohrengel, Serge Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
- Sébastien Martin, Julien Vovelle, Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function
- Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
- Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
- Mario Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
- Mario Ohlberger, error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.