La propriété de Banach Saks ne passe pas de E à L 2 ( E ) , d’après J. Bourgain

S. Guerre

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980)

  • page 1-9

How to cite

top

Guerre, S.. "La propriété de Banach Saks ne passe pas de $E$ à $L^2(E)$, d’après J. Bourgain." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980): 1-9. <http://eudml.org/doc/109243>.

@article{Guerre1979-1980,
author = {Guerre, S.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {Banach Saks property; Cesaro summable sequence; space of Bochner integrable functions},
language = {fre},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {La propriété de Banach Saks ne passe pas de $E$ à $L^2(E)$, d’après J. Bourgain},
url = {http://eudml.org/doc/109243},
year = {1979-1980},
}

TY - JOUR
AU - Guerre, S.
TI - La propriété de Banach Saks ne passe pas de $E$ à $L^2(E)$, d’après J. Bourgain
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1979-1980
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - fre
KW - Banach Saks property; Cesaro summable sequence; space of Bochner integrable functions
UR - http://eudml.org/doc/109243
ER -

References

top
  1. [1] D.J. Aldous: Unconditional bases and martingales in L P(F), Maths. Proc. Cambridge Soc. (1979) 85-117. Zbl0389.46027MR510406
  2. [2] B. Beauzamy: Banach Saks properties and spreading models, Centre de Mathématiques del'Ecole Polytechnique1978. 
  3. [3] J. Bourgain: On the Banach Saks property in Lebesgue spaces, Vrije Universiteit, Brussel, preprint 1979. 
  4. [4] A. Brunel and L. Sucheston: On B-convex Banach spaces, Maths. Systems theory, vol. 7, No 4 (1973). Zbl0323.46018MR438085
  5. [5] T. Figiel and L. Sucheston: An application of Ramsey sets in analysis, Advances in Maths., vol. 20, No 2 (1976). Zbl0325.46029MR417757
  6. [6] S. Guerre et J.T. Lapresté: Quelques propriétés des modèles étalés sur les espaces de Banach, preprint, Université ParisVI, 1979. Zbl0454.46017
  7. [7] J. Lindenstrauss et L. Tzafriri: Classical Banach spaces, vol. 1, 2, Springer Verlag MLN92. Zbl0852.46015MR415253
  8. [8] H.P. Rosenthal: Weakly independent sequences and the Banach Saks property, Proceedings of the Durham Symposium, July 1975. 
  9. [9] J. Silver: Every analytic set is Ramsey, J. Symb. Logic, 35 (1970) p. 60-64. Zbl0216.01304MR332480

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.