Quelques propriétés des modèles étalés sur les espaces de Banach

S. Guerre; J. T. Lapresté

Annales de l'I.H.P. Probabilités et statistiques (1980)

  • Volume: 16, Issue: 4, page 339-347
  • ISSN: 0246-0203

How to cite

top

Guerre, S., and Lapresté, J. T.. "Quelques propriétés des modèles étalés sur les espaces de Banach." Annales de l'I.H.P. Probabilités et statistiques 16.4 (1980): 339-347. <http://eudml.org/doc/77149>.

@article{Guerre1980,
author = {Guerre, S., Lapresté, J. T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {spreading model; weak convergence; good sequence},
language = {fre},
number = {4},
pages = {339-347},
publisher = {Gauthier-Villars},
title = {Quelques propriétés des modèles étalés sur les espaces de Banach},
url = {http://eudml.org/doc/77149},
volume = {16},
year = {1980},
}

TY - JOUR
AU - Guerre, S.
AU - Lapresté, J. T.
TI - Quelques propriétés des modèles étalés sur les espaces de Banach
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1980
PB - Gauthier-Villars
VL - 16
IS - 4
SP - 339
EP - 347
LA - fre
KW - spreading model; weak convergence; good sequence
UR - http://eudml.org/doc/77149
ER -

References

top
  1. [1] B. Beauzamy, Banach Saks properties and Spreading models. Math. Scand., t. 44, 1979, p. 357-384. Zbl0427.46007MR555227
  2. [2] C. Bessaga and A. Pelczinski, On bases and unconditional convergence of series in Banach Spaces. Studia Math. t. XVII, 1958. Zbl0084.09805MR115069
  3. [3] A. Brunel et L. Sucheston, On B-Convex Banach Spaces. Math. Systems Theory, t. 7, n° 4, 1973. Zbl0323.46018MR438085
  4. [4] M.I. Kadets and A. Pelczynski, Basic sequences and biorthogonal system and norming sets in Banach spaces. Studia Math., t. 25, 1965, p. 297-323 (en russe). Zbl0135.34504MR181886
  5. [5] J.T. Lapresté, Suites écartables dans les espaces de Banach. Séminaire sur la géométrie des espaces de Banach. École Polytechnique, n° XX, 1977–1978. Zbl0386.46019MR520218
  6. [6] J. Lindenstrauss et L. Tzafriri, Classical Banach spaces I et II, Springer-Verlag. Zbl0259.46011MR500056
  7. [7] V.D. Millman, Geometric theory of Banach spaces. Part I. Russian Math. Surveys, 1970–1971, p. 111. Zbl0221.46015
  8. [8] E. Odell, Applications of Ramsey theorems to Banach spaces theory, Preprint, University of Texas at Austin. Zbl0468.46009MR606226
  9. [9] E. Odell and W. Wage, Weakly null normalised sequences equivalent to the unit vector basis of c0, Preprint, University of Texas at Austin. 
  10. [10] H.P. Rosenthal, A caracterisation of Banach spaces containing l1. Proc. Nat. Acad. Sci. (U. S. A.), t. 71, 1974, p. 2411-2413. Zbl0297.46013MR358307
  11. [11] I. Singer, Bases in Banach spaces, Springer-Verlag. Zbl0198.16601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.