L’équation de Klein Gordon à données petites

Jean-Marc Delort[1]

  • [1] Jean Marc Delort, Département de Mathématiques, Institut Galilée, Université Paris Nord, Av Jean-Baptiste Clément, 93430 Villetaneuse cedex

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-13

How to cite

top

Delort, Jean-Marc. "L’équation de Klein Gordon à données petites." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-13. <http://eudml.org/doc/10932>.

@article{Delort1996-1997,
affiliation = {Jean Marc Delort, Département de Mathématiques, Institut Galilée, Université Paris Nord, Av Jean-Baptiste Clément, 93430 Villetaneuse cedex},
author = {Delort, Jean-Marc},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {polynomial nonlinearities; small initial data; estimates from below; life span},
language = {eng},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {L’équation de Klein Gordon à données petites},
url = {http://eudml.org/doc/10932},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Delort, Jean-Marc
TI - L’équation de Klein Gordon à données petites
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 13
LA - eng
KW - polynomial nonlinearities; small initial data; estimates from below; life span
UR - http://eudml.org/doc/10932
ER -

References

top
  1. J. Bourgain : Fourier transforms restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II Geom. Funct. Anal. 3, (1993) 107-156, 202-262. Zbl0787.35098MR1209299
  2. V. Georgiev et P. Popivanov : Global solutions to the two-dimensional Klein-Gordon equations, Commun. Part. Diff. Eqs. 16, (1991) 941–995. Zbl0741.35039MR1116850
  3. L. Hörmander : Non-linear Hyperbolic Differential Equations, Lectures Notes in Lund, preprint, (1986-87). 
  4. S. Klainerman : Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math. 38, (1985) 631-641. Zbl0597.35100MR803252
  5. S. Klainerman et M. Machedon : Smoothing estimates for null form and applications, 81 Duke Math. J. (1995) 99-133. Zbl0909.35094MR1381973
  6. R. Kosecki : The Unit Condition and Global Existence for a Class of Nonlinear Klein-Gordon Equations, Jour. Diff. Eq. 100, (1992) 257-268. Zbl0781.35062MR1194810
  7. K. Moriyama, S. Tonegawa et Y. Tsutsumi : Almost Global Existence of Solution for the Quadratic Semilinear Klein-Gordon Equation in One Space Dimension, preprint, (1996). Zbl0891.35142MR1482854
  8. T. Ozawa, K. Tsutaya et Y. Tsutsumi : Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic non-linearity in two space dimensions, Math. Z., 222, (1996) 341-362. Zbl0877.35030MR1400196
  9. J. Shatah : Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38, (1985) 685-696. Zbl0597.35101MR803256
  10. J.C.H. Simon et E. Taflin : The Cauchy problem for nonlinear Klein-Gordon equations, Commun. Math. Phys. 152, (1993) 433-478. Zbl0783.35066MR1213298

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.