# Ground states of supersymmetric matrix models

Gian Michele Graf^{[1]}

- [1] Theoretische Physik, ETH-Hönggerberg, CH–8093 Zürich

Séminaire Équations aux dérivées partielles (1998-1999)

- Volume: 1998-1999, page 1-8

## Access Full Article

top## Abstract

top## How to cite

topGraf, Gian Michele. "Ground states of supersymmetric matrix models." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-8. <http://eudml.org/doc/10963>.

@article{Graf1998-1999,

abstract = {We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the $d=9$ model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in $d=9$. Moreover, it would be unique. Other values of $d$, where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation. This seminar is based on joint work with J. Fröhlich, D. Hasler, J. Hoppe and S.-T. Yau.},

affiliation = {Theoretische Physik, ETH-Hönggerberg, CH–8093 Zürich},

author = {Graf, Gian Michele},

journal = {Séminaire Équations aux dérivées partielles},

language = {fre},

pages = {1-8},

publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},

title = {Ground states of supersymmetric matrix models},

url = {http://eudml.org/doc/10963},

volume = {1998-1999},

year = {1998-1999},

}

TY - JOUR

AU - Graf, Gian Michele

TI - Ground states of supersymmetric matrix models

JO - Séminaire Équations aux dérivées partielles

PY - 1998-1999

PB - Centre de mathématiques Laurent Schwartz, École polytechnique

VL - 1998-1999

SP - 1

EP - 8

AB - We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the $d=9$ model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in $d=9$. Moreover, it would be unique. Other values of $d$, where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation. This seminar is based on joint work with J. Fröhlich, D. Hasler, J. Hoppe and S.-T. Yau.

LA - fre

UR - http://eudml.org/doc/10963

ER -

## References

top- M. Baake, P. Reinicke, V. Rittenberg, Fierz identities for real Clifford algebras and the number of supercharges, J. Math. Phys. 26, 1070-1071 (1985). Zbl0604.22014MR787357
- T. Banks, W. Fischler, S.H. Shenker, L. Susskind, M theory as a matrix model : a conjecture, Phys. Rev. D55, 5112-5128 (1997) ; hep-th/9610043. MR1449617
- M. Claudson, M. Halpern, Supersymmetric ground state wave functions, Nucl. Phys. B250, 689-715 (1985). MR780110
- E.A. Coddington, N. Levinson, Theory of ordinary differential equations, Krieger (1987). Zbl0064.33002
- J. Fröhlich, J. Hoppe, On zero–mass ground states in super–membrane matrix models. Comm. Math. Phys. 191, 613-626 (1998) ; hep-th/9701119. Zbl0911.46046MR1608539
- J. Fröhlich, G.M. Graf, D. Hasler, J. Hoppe, S.-T. Yau, Asymptotic form of zero energy wave functions in supersymmetric matrix models, hep-th/9904182. Zbl0951.81083
- J. Goldstone, unpublished. J. Hoppe, Quantum theory of a massless relativistic surface, MIT Ph.D. Thesis (1982) ; Proceedings of the workshop Constraints theory and relativistic dynamics, World Scientific (1987).
- M.B. Halpern, C. Schwartz, Asymptotic search for ground states of SU(2) matrix theory, Int. J. Mod. Phys. A13, 4367-4408 (1998) ; hep-th/9712133. Zbl0937.81057MR1647027
- A. Konechny, On asymptotic Hamiltonian for SU(N) matrix theory, JHEP 9810 (1998) ; hep-th/9805046. Zbl0955.81042MR1660433
- S. Sethi, M. Stern, D–Brane bound state redux. Comm. Math. Phys. 194, 675-705 (1998) ; hep-th/9705046. Zbl0911.53052MR1631497
- B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum, Ann. Phys. 146, 209-220 (1983). Zbl0547.35039MR701264
- B. Simon, Representations of finite and compact groups, American Mathematical Society (1996). Zbl0840.22001MR1363490
- B. de Wit, J. Hoppe, H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B305, 545-581 (1988). Zbl1156.81457MR984284
- B. de Wit, M. Lüscher, H. Nicolai, The supermembrane is unstable, Nucl. Phys. B320, 135-159 (1989). MR1003285
- E. Witten, Bound states of strings and $p$–branes. Nuclear Phys. B460, 335-350 (1996) ; hep-th/9510135. Zbl1003.81527MR1377168
- P. Yi, Witten index and threshold bound states of D-branes, Nucl. Phys. B505, 307-318 (1997) ; hep-th/9704098. Zbl0925.58105MR1483841

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.