Page 1

Displaying 1 – 13 of 13

Showing per page

Dimension vs. genus: A surface realization of the little k-cubes and an E operad

Ralph M. Kaufmann (2009)

Banach Center Publications

We define a new E operad based on surfaces with foliations which contains E k suboperads. We construct CW models for these operads and provide applications of these models by giving actions on Hochschild complexes (thus making contact with string topology), by giving explicit cell representatives for the Dyer-Lashof-Cohen operations for the 2-cubes and by constructing new Ω spectra. The underlying novel principle is that we can trade genus in the surface representation vs. the dimension k of the little...

Fourier Mukai transforms and applications to string theory.

Björn Andreas, Daniel Hernández Ruipérez (2005)

RACSAM

El artículo es una introducción a la transformación de Fourier-Mukai y sus aplicaciones a varios problemas de móduli, teoría de cuerdas y simetría "mirror". Se desarrollan los fundamentos necesarios para las transformaciones de Fourier-Mukai, entre ellos las categorías derivadas y los functores integrales. Se explican además sus versiones relativas, que se necesitan para precisar la noción de T-dualidad fibrada en variedades de Calabi-Yau elípticas de dimensión tres. Se consideran también varias...

Ground states of supersymmetric matrix models

Gian Michele Graf (1998/1999)

Séminaire Équations aux dérivées partielles

We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the d = 9 model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in d = 9 . Moreover, it would be unique. Other values of d , where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation. This seminar...

Quantum Cohomology and Crepant Resolutions: A Conjecture

Tom Coates, Yongbin Ruan (2013)

Annales de l’institut Fourier

We give an expository account of a conjecture, developed by Coates–Iritani–Tseng and Ruan, which relates the quantum cohomology of a Gorenstein orbifold 𝒳 to the quantum cohomology of a crepant resolution Y of 𝒳 . We explore some consequences of this conjecture, showing that it implies versions of both the Cohomological Crepant Resolution Conjecture and of the Crepant Resolution Conjectures of Ruan and Bryan–Graber. We also give a ‘quantized’ version of the conjecture, which determines higher-genus...

Currently displaying 1 – 13 of 13

Page 1