Fonction de Correlation pour des Mesures Complexes

Wei Min Wang[1]

  • [1] Dépt. de Mathématiques, Université de Paris Sud, F-91405 Orsay cedex and URA 760, CNRS

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-8

Abstract

top
We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.

How to cite

top

Wang, Wei Min. "Fonction de Correlation pour des Mesures Complexes." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-8. <http://eudml.org/doc/10971>.

@article{Wang1998-1999,
abstract = {We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.},
affiliation = {Dépt. de Mathématiques, Université de Paris Sud, F-91405 Orsay cedex and URA 760, CNRS},
author = {Wang, Wei Min},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Fonction de Correlation pour des Mesures Complexes},
url = {http://eudml.org/doc/10971},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Wang, Wei Min
TI - Fonction de Correlation pour des Mesures Complexes
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 8
AB - We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.
LA - eng
UR - http://eudml.org/doc/10971
ER -

References

top
  1. P. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958). 
  2. M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivation, Commun. Math. Phys. 157, 245 (1993). Zbl0782.60044MR1244867
  3. F. A. Berezin, The method of second quantization, New York: Academic press, 1966. Zbl0151.44001MR208930
  4. A. Bovier, M. Campanino, A. Klein, and F. Perez, Smoothness of the density of states in the Anderson model at high disorder, Commun. Math. Phys. 114 439-461, (1988). Zbl0644.60057MR929139
  5. F. Constantinescu, J. Fröhlich, and T. Spencer, Analyticity of the density of states and replica method for random Schrödinger operators on a lattice, J. Stat. Phys. 34 571-596, (1984). Zbl0591.60060MR748803
  6. H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124, 285-299 (1989). Zbl0698.60051MR1012868
  7. E. N. Economu, Green’s functions in quantum physics, Springer Series in Solid State Sciences 7, 1979. 
  8. J. Fröhlich, F. Martinelli, E. Scoppola and T.Spencer, Constructive proof of localization in Anderson tight binding model, Commun. Math. Phys. 101, 21-46 (1985). Zbl0573.60096MR814541
  9. J. Fröhlich and T.Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88, 151-184 (1983). Zbl0519.60066MR696803
  10. B. Helffer and J. Sjöstrand, On the correlation for Kac-like models in the convex case, J. of Stat. Phys. (1994). Zbl0946.35508MR1257821
  11. A. Klein, The supersymmetric replica trick and smoothness of the density of states for the random Schrödinger operators, Proceedings of Symposium in Pure Mathematics, 51, 1990. Zbl0709.60105MR1077393
  12. A. Klein and A. Spies, Smoothness of the density of states in the Anderson model on a one dimensional strip, Ann. of Phys. 183, 352-398 (1988). Zbl0635.60077MR952881
  13. J. Sjöstrand, Ferromagnetic integrals, correlations and maximum principle, Ann. Inst. Fourier 44, 601-628 (1994). Zbl0831.35031MR1296745
  14. J. Sjöstrand, Correlation asymptotics and Witten Laplacians, Algebra and Analysis 8 (1996). Zbl0877.35084MR1392018
  15. J. Sjöstrand and W. M. Wang, Supersymmetric measures and maximum principles in the complex domaine– exponential decay of Green’s functions, Ann. Scient. Ec. Norm. Sup. 32, (1999). Zbl0941.47033
  16. J. Sjöstrand and W. M. Wang, Exponential decay of averaged Green functions for the random Schrödinger operators, a direct approach, Ann. Scient. Ec. Norm. Sup. 32, (1999) . Zbl0934.35036MR1685078
  17. T. Spencer, The Schrödinger equation with a random potential–a mathematical review, Les Houches XLIII, K. Osterwalder, R. Stora (eds.) (1984). Zbl0655.60050
  18. T. Voronov, Geometric integration theory on supermanifolds, Mathematical Physics Review, USSR Academy of Sciences, Moscow, 1993. Zbl0839.58014
  19. W. M. Wang, Asymptotic expansion for the density of states of the magnetic Schrödinger operator with a random potential, Commun. Math. Phys. 172, 401-425 (1995). Zbl0851.35145MR1350414
  20. W. M. Wang, Supersymmetry and density of states of the magnetic Schrödinger operator with a random potential revisited, Commun. PDE (1999). Zbl0964.35122MR1748355

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.