Fonction de Correlation pour des Mesures Complexes
Wei Min Wang[1]
- [1] Dépt. de Mathématiques, Université de Paris Sud, F-91405 Orsay cedex and URA 760, CNRS
Séminaire Équations aux dérivées partielles (1998-1999)
- Volume: 1998-1999, page 1-8
Access Full Article
topAbstract
topHow to cite
topWang, Wei Min. "Fonction de Correlation pour des Mesures Complexes." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-8. <http://eudml.org/doc/10971>.
@article{Wang1998-1999,
abstract = {We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.},
affiliation = {Dépt. de Mathématiques, Université de Paris Sud, F-91405 Orsay cedex and URA 760, CNRS},
author = {Wang, Wei Min},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Fonction de Correlation pour des Mesures Complexes},
url = {http://eudml.org/doc/10971},
volume = {1998-1999},
year = {1998-1999},
}
TY - JOUR
AU - Wang, Wei Min
TI - Fonction de Correlation pour des Mesures Complexes
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 8
AB - We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.
LA - eng
UR - http://eudml.org/doc/10971
ER -
References
top- P. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
- M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivation, Commun. Math. Phys. 157, 245 (1993). Zbl0782.60044MR1244867
- F. A. Berezin, The method of second quantization, New York: Academic press, 1966. Zbl0151.44001MR208930
- A. Bovier, M. Campanino, A. Klein, and F. Perez, Smoothness of the density of states in the Anderson model at high disorder, Commun. Math. Phys. 114 439-461, (1988). Zbl0644.60057MR929139
- F. Constantinescu, J. Fröhlich, and T. Spencer, Analyticity of the density of states and replica method for random Schrödinger operators on a lattice, J. Stat. Phys. 34 571-596, (1984). Zbl0591.60060MR748803
- H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124, 285-299 (1989). Zbl0698.60051MR1012868
- E. N. Economu, Green’s functions in quantum physics, Springer Series in Solid State Sciences 7, 1979.
- J. Fröhlich, F. Martinelli, E. Scoppola and T.Spencer, Constructive proof of localization in Anderson tight binding model, Commun. Math. Phys. 101, 21-46 (1985). Zbl0573.60096MR814541
- J. Fröhlich and T.Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88, 151-184 (1983). Zbl0519.60066MR696803
- B. Helffer and J. Sjöstrand, On the correlation for Kac-like models in the convex case, J. of Stat. Phys. (1994). Zbl0946.35508MR1257821
- A. Klein, The supersymmetric replica trick and smoothness of the density of states for the random Schrödinger operators, Proceedings of Symposium in Pure Mathematics, 51, 1990. Zbl0709.60105MR1077393
- A. Klein and A. Spies, Smoothness of the density of states in the Anderson model on a one dimensional strip, Ann. of Phys. 183, 352-398 (1988). Zbl0635.60077MR952881
- J. Sjöstrand, Ferromagnetic integrals, correlations and maximum principle, Ann. Inst. Fourier 44, 601-628 (1994). Zbl0831.35031MR1296745
- J. Sjöstrand, Correlation asymptotics and Witten Laplacians, Algebra and Analysis 8 (1996). Zbl0877.35084MR1392018
- J. Sjöstrand and W. M. Wang, Supersymmetric measures and maximum principles in the complex domaine– exponential decay of Green’s functions, Ann. Scient. Ec. Norm. Sup. 32, (1999). Zbl0941.47033
- J. Sjöstrand and W. M. Wang, Exponential decay of averaged Green functions for the random Schrödinger operators, a direct approach, Ann. Scient. Ec. Norm. Sup. 32, (1999) . Zbl0934.35036MR1685078
- T. Spencer, The Schrödinger equation with a random potential–a mathematical review, Les Houches XLIII, K. Osterwalder, R. Stora (eds.) (1984). Zbl0655.60050
- T. Voronov, Geometric integration theory on supermanifolds, Mathematical Physics Review, USSR Academy of Sciences, Moscow, 1993. Zbl0839.58014
- W. M. Wang, Asymptotic expansion for the density of states of the magnetic Schrödinger operator with a random potential, Commun. Math. Phys. 172, 401-425 (1995). Zbl0851.35145MR1350414
- W. M. Wang, Supersymmetry and density of states of the magnetic Schrödinger operator with a random potential revisited, Commun. PDE (1999). Zbl0964.35122MR1748355
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.