Ferromagnetic integrals, correlations and maximum principles

Johannes Sjöstrand

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 2, page 601-628
  • ISSN: 0373-0956

Abstract

top
For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.

How to cite

top

Sjöstrand, Johannes. "Ferromagnetic integrals, correlations and maximum principles." Annales de l'institut Fourier 44.2 (1994): 601-628. <http://eudml.org/doc/75075>.

@article{Sjöstrand1994,
abstract = {For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.},
author = {Sjöstrand, Johannes},
journal = {Annales de l'institut Fourier},
keywords = {exponential convergence of the first eigenvalue; expectation values; maximum principle},
language = {eng},
number = {2},
pages = {601-628},
publisher = {Association des Annales de l'Institut Fourier},
title = {Ferromagnetic integrals, correlations and maximum principles},
url = {http://eudml.org/doc/75075},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Sjöstrand, Johannes
TI - Ferromagnetic integrals, correlations and maximum principles
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 2
SP - 601
EP - 628
AB - For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.
LA - eng
KW - exponential convergence of the first eigenvalue; expectation values; maximum principle
UR - http://eudml.org/doc/75075
ER -

References

top
  1. [BL]H.J. BRASCAMP, E.H. LIEB, On extensions of the Brunn-Minkovski and Prékopa Leindler theorems,..., J. Funct. An., 22 (1976), 366-389. Zbl0334.26009
  2. [BrFLeSp]J. BRICMONT, J.R. FONTAINE, J.L. LEBOWITZ, T. SPENCER, Lattice systems with continuous symmetry II. Decay of correlations, Comm. Math. Phys., 78 (1981), 363-373. 
  3. [BrFLeLSp]J. BRICMONT, J.R. FONTAINE, J.L. LEBOWITZ, E.H. LIEB, T. SPENCER, Lattice systems with continuous symmetry III. Low temperature asymptotic expansion for the plane rotator model, Comm. Math. Phys., 78 (1981), 545-566. 
  4. [C]P. CARTIER, Inégalités de correlation en mécanique statistique, Sém. Bourbaki, 25ème année, 1972-1973, n° 431, Springer LNM n° 383. 
  5. [E]R.S. ELLIS, Entropy, large deviations and statistical mechanics, Grundlehren der Math. Wiss., 271, Springer (1985). Zbl0566.60097MR87d:82008
  6. [GlJ]J. GLIMM, A. JAFFEE, Quantum physics, a functional integral point of view, second edition, Springer (1987). 
  7. [Gr]G. GRIMMETT, Percolation, Springer (1989). Zbl0691.60089MR90j:60109
  8. [GRSi]F. GUERRA, L. ROSEN, B. SIMON, The p(ø)2 Euclidean quantum field theory as classical statistical mechanics, Ann. Math., 101 (1975), 111-259. 
  9. [HS]B. HELFFER, J. SJÖSTRAND, On the correlation for Kac like models in the convex case, report n° 9, 1992-1993, Institut Mittag-Leffler. Zbl0946.35508
  10. [SinWYY]I.M. SINGER, B. WONG, S.T. YAU, S.S.T. YAU, An estimate of the gap of the first two eigenvalues of the Schrödinger operator, Ann. Sc. Norm. Sup. Pisa (ser. 4), 12 (1985), 319-333. Zbl0603.35070MR87j:35280
  11. [S]J. SJÖSTRAND, Exponential convergence of the first eigenvalue divided by the dimension, for certain sequences of Schrödinger operators, Astérisque, 210 (1992), 303-326. Zbl0796.35123
  12. [So]A.D. SOKAL, Mean field bounds and correlation inequalities, J. Stat. Phys., 28 (1982), 431-439. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.