Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions

J. Sjöstrand; W.-M. Wang

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 3, page 347-414
  • ISSN: 0012-9593

How to cite

top

Sjöstrand, J., and Wang, W.-M.. "Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions." Annales scientifiques de l'École Normale Supérieure 32.3 (1999): 347-414. <http://eudml.org/doc/82491>.

@article{Sjöstrand1999,
author = {Sjöstrand, J., Wang, W.-M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Anderson model; supersymmetric measures; holomorphic measures; Gaussian measures; random Schrödinger operators; Green's function},
language = {eng},
number = {3},
pages = {347-414},
publisher = {Elsevier},
title = {Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions},
url = {http://eudml.org/doc/82491},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Sjöstrand, J.
AU - Wang, W.-M.
TI - Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 3
SP - 347
EP - 414
LA - eng
KW - Anderson model; supersymmetric measures; holomorphic measures; Gaussian measures; random Schrödinger operators; Green's function
UR - http://eudml.org/doc/82491
ER -

References

top
  1. [A] P. ANDERSON, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958). 
  2. [AM] M. AIZENMAN and S. MOLCHANOV, Localization at large disorder and at extreme energies : an elementary derivation, Commun. Math. Phys. 157, 245 (1993). Zbl0782.60044MR95a:82052
  3. [Be] F. A. BEREZIN, The method of second quantization, New York : Academic press, 1966. Zbl0151.44001MR34 #8738
  4. [BCKP] A. BOVIER, M. CAMPANINO, A. KLEIN, and F. PEREZ, Smoothness of the density of states in the Anderson model at high disorder, Commun. Math. Phys. 114 439-461, (1988). Zbl0644.60057MR89c:82050
  5. [CFS] F. CONSTANTINESCU, J. FRÖHLICH, and T. SPENCER, Analyticity of the density of states and replica method for random Schrödinger operators on a lattice, J. Stat. Phys. 34 571-596, (1984). Zbl0591.60060
  6. [DK] H. VON DREIFUS and A. KLEIN, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124, 285-299 (1989). Zbl0698.60051MR90k:82056
  7. [Ec] E. N. ECONOMU, Green's functions in quantum physics, Springer Series in Solid State Sciences 7, 1979. MR82j:81001
  8. [FMSS] J. FRÖHLICH, F. MARTINELLI, E. SCOPPOLA and T. SPENCER, Constructive proof of localization in Anderson tight binding model, Commun. Math. Phys. 101, 21-46 (1985). Zbl0573.60096MR87a:82047
  9. [FS] J. FRÖHLICH and T. SPENCER, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88, 151-184 (1983). Zbl0519.60066MR85c:82004
  10. [HS] B. HELFFER and J. SJÖSTRAND, On the correlation for Kac-like models in the convex case, J. of Stat. Phys. (1994). Zbl0946.35508
  11. [K] A. KLEIN, The supersymmetric replica trick and smoothness of the density of states for the random Schrödinger operators, Proceedings of Symposium in Pure Mathematics, 51, 1990. Zbl0709.60105MR92b:82076
  12. [KS] A. KLEIN and A. SPIES, Smoothness of the density of states in the Anderson model on a one dimensional strip, Annals of Physics 183, 352-398 (1988). Zbl0635.60077MR89k:82012
  13. [S1] J. SJÖSTRAND, Ferromagnetic integrals, correlations and maximum principle, Ann. Inst. Fourier 44, 601-628 (1994). Zbl0831.35031MR95h:81015
  14. [S2] J. SJÖSTRAND, Correlation asymptotics and Witten Laplacians, Algebra and Analysis 8 (1996). Zbl0877.35084
  15. [SW] J. SJÖSTRAND and W. M. WANG, Exponential decay of averaged Green functions for the random Schrödinger operators, a direct approach, Ann. Scient. Éc. Norm. Sup., 32 (1999). Zbl0934.35036
  16. [Sp] T. SPENCER, The Schrödinger equation with a random potential-a mathematical review, Les Houches XLIII, K. Osterwalder, R. Stora (eds.) (1984). Zbl0655.60050
  17. [V] T. VORONOV, Geometric integration theory on supermanifolds, Mathematical Physics Review, USSR Academy of Sciences, Moscow, 1993. Zbl0839.58014
  18. [W1] W. M. WANG, Asymptotic expansion for the density of states of the magnetic Schrödinger operator with a random potential, Commun. Math. Phys. 172, 401-425 (1995). Zbl0851.35145
  19. [W2] W. M. WANG, Supersymmetry and density of states of the magnetic Schrödinger operator with a random potential revisited, (submitted). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.