Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions
Annales scientifiques de l'École Normale Supérieure (1999)
- Volume: 32, Issue: 3, page 347-414
- ISSN: 0012-9593
Access Full Article
topHow to cite
topSjöstrand, J., and Wang, W.-M.. "Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions." Annales scientifiques de l'École Normale Supérieure 32.3 (1999): 347-414. <http://eudml.org/doc/82491>.
@article{Sjöstrand1999,
author = {Sjöstrand, J., Wang, W.-M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Anderson model; supersymmetric measures; holomorphic measures; Gaussian measures; random Schrödinger operators; Green's function},
language = {eng},
number = {3},
pages = {347-414},
publisher = {Elsevier},
title = {Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions},
url = {http://eudml.org/doc/82491},
volume = {32},
year = {1999},
}
TY - JOUR
AU - Sjöstrand, J.
AU - Wang, W.-M.
TI - Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 3
SP - 347
EP - 414
LA - eng
KW - Anderson model; supersymmetric measures; holomorphic measures; Gaussian measures; random Schrödinger operators; Green's function
UR - http://eudml.org/doc/82491
ER -
References
top- [A] P. ANDERSON, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
- [AM] M. AIZENMAN and S. MOLCHANOV, Localization at large disorder and at extreme energies : an elementary derivation, Commun. Math. Phys. 157, 245 (1993). Zbl0782.60044MR95a:82052
- [Be] F. A. BEREZIN, The method of second quantization, New York : Academic press, 1966. Zbl0151.44001MR34 #8738
- [BCKP] A. BOVIER, M. CAMPANINO, A. KLEIN, and F. PEREZ, Smoothness of the density of states in the Anderson model at high disorder, Commun. Math. Phys. 114 439-461, (1988). Zbl0644.60057MR89c:82050
- [CFS] F. CONSTANTINESCU, J. FRÖHLICH, and T. SPENCER, Analyticity of the density of states and replica method for random Schrödinger operators on a lattice, J. Stat. Phys. 34 571-596, (1984). Zbl0591.60060
- [DK] H. VON DREIFUS and A. KLEIN, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124, 285-299 (1989). Zbl0698.60051MR90k:82056
- [Ec] E. N. ECONOMU, Green's functions in quantum physics, Springer Series in Solid State Sciences 7, 1979. MR82j:81001
- [FMSS] J. FRÖHLICH, F. MARTINELLI, E. SCOPPOLA and T. SPENCER, Constructive proof of localization in Anderson tight binding model, Commun. Math. Phys. 101, 21-46 (1985). Zbl0573.60096MR87a:82047
- [FS] J. FRÖHLICH and T. SPENCER, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88, 151-184 (1983). Zbl0519.60066MR85c:82004
- [HS] B. HELFFER and J. SJÖSTRAND, On the correlation for Kac-like models in the convex case, J. of Stat. Phys. (1994). Zbl0946.35508
- [K] A. KLEIN, The supersymmetric replica trick and smoothness of the density of states for the random Schrödinger operators, Proceedings of Symposium in Pure Mathematics, 51, 1990. Zbl0709.60105MR92b:82076
- [KS] A. KLEIN and A. SPIES, Smoothness of the density of states in the Anderson model on a one dimensional strip, Annals of Physics 183, 352-398 (1988). Zbl0635.60077MR89k:82012
- [S1] J. SJÖSTRAND, Ferromagnetic integrals, correlations and maximum principle, Ann. Inst. Fourier 44, 601-628 (1994). Zbl0831.35031MR95h:81015
- [S2] J. SJÖSTRAND, Correlation asymptotics and Witten Laplacians, Algebra and Analysis 8 (1996). Zbl0877.35084
- [SW] J. SJÖSTRAND and W. M. WANG, Exponential decay of averaged Green functions for the random Schrödinger operators, a direct approach, Ann. Scient. Éc. Norm. Sup., 32 (1999). Zbl0934.35036
- [Sp] T. SPENCER, The Schrödinger equation with a random potential-a mathematical review, Les Houches XLIII, K. Osterwalder, R. Stora (eds.) (1984). Zbl0655.60050
- [V] T. VORONOV, Geometric integration theory on supermanifolds, Mathematical Physics Review, USSR Academy of Sciences, Moscow, 1993. Zbl0839.58014
- [W1] W. M. WANG, Asymptotic expansion for the density of states of the magnetic Schrödinger operator with a random potential, Commun. Math. Phys. 172, 401-425 (1995). Zbl0851.35145
- [W2] W. M. WANG, Supersymmetry and density of states of the magnetic Schrödinger operator with a random potential revisited, (submitted).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.