Effet régularisant pour une loi de conservation scalaire multidimensionnelle

C Cheverry[1]

  • [1] CNRS UMR 6625 IRMAR Université de Rennes I, Campus de Beaulieu 35 042 Rennes Cedex, France

Séminaire Équations aux dérivées partielles (1998-1999)

  • page 1-13

How to cite

top

Cheverry, C. "Effet régularisant pour une loi de conservation scalaire multidimensionnelle." Séminaire Équations aux dérivées partielles (1998-1999): 1-13. <http://eudml.org/doc/10975>.

@article{Cheverry1998-1999,
affiliation = {CNRS UMR 6625 IRMAR Université de Rennes I, Campus de Beaulieu 35 042 Rennes Cedex, France},
author = {Cheverry, C},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Effet régularisant pour une loi de conservation scalaire multidimensionnelle},
url = {http://eudml.org/doc/10975},
year = {1998-1999},
}

TY - JOUR
AU - Cheverry, C
TI - Effet régularisant pour une loi de conservation scalaire multidimensionnelle
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
LA - fre
UR - http://eudml.org/doc/10975
ER -

References

top
  1. P. Bénilan, M.G. Crandall, Regularizing effects of homogeneous evolution equations, Contributions to Analysis and Geometry, John Hopkins Univ. Press, Baltimore, MD, (1981), 23-39. Zbl0556.35067MR648452
  2. F. Bouchut, Introduction to the mathematical theory of kinetic equations, Coll. « Series in Appl. Math. » Elsevier in Session « L’état de la recherche » de la S. M. F., Equations cinétiques, Orléans, 4-6 juin 1998. 
  3. Y. Brenier, Averaged multivalued solutions fot scalar conservation laws, Siam J. Numer. Anal., 6 (1984), 1013-1037. Zbl0565.65054MR765504
  4. C. Cheverry, Regularizing effects for multidimensional scalar conservation laws, submitted to the Ann. Inst. Poin., option Analyse non linéaire (1999). Zbl0966.35074MR1782740
  5. E.D. Conway, The formation and decay of shocks for a conservation law in several dimensions, Arch. Rational Mech. Anal., 64 (1977), 47-57. Zbl0352.35029MR427850
  6. C. Dafermos, Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985), 201-239. Zbl0616.35054MR785530
  7. R.J. DiPerna, P. L. Lions, Y. Meyer, L p regularity of velocity averages, Ann. Inst. Henri Poincaré, 8 (1991), 271-287. Zbl0763.35014MR1127927
  8. B. Engquist, W. E, Large Time Behavior and Homogenization of Solutions of Two-Dimensional Conservation Laws, Comm. Pure and Ap. Math., XLVI (1993), 1-26. Zbl0797.35114MR1193341
  9. P. Gérard, Moyennisation et régularité deux-microlocale, Ann. Sci. Ecole Norm. Sup., 23 (1990), 89-121. Zbl0725.35003MR1042388
  10. S. Helgason, The Radon transform, Progress in Mathematics, 5, Birkhäuser. Zbl0453.43011MR1723736
  11. S.N. Kruzkov, First-order quasilinear equations in several independent variables, Math.USSR-Sb., 64 (1977), 47-57. Zbl0215.16203
  12. P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional conference series in applied mathematics, SIAM (1973). Zbl0268.35062MR350216
  13. P.D. Lax, The Formation and Decay of shock waves, Am. Math. Month., 3 (1972), 227-241. Zbl0228.35019MR298252
  14. T.P. Liu et M. Pierre, Source solutions and asymptotic behavior in conservation laws, Siam J. Math. Anal., 19 (1988), 763-773. 
  15. P.L. Lions, B. Perthame et E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, Bull. of the Ame. math. So., 7 (1994), 169-189. Zbl0820.35094MR1201239
  16. F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 489-507. Zbl0399.46022MR506997
  17. O. Oleinik, Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk., 26 (1963), 95-172. Zbl0131.31803MR151737
  18. F. Otto, A regularizing effect of nonlinear transport equations, Quart. Appl. Math., 56 (1998), no 2, 355-375. Zbl0970.35115MR1622511
  19. B. Perthame et E. Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys., 136 (1991), 501-517. Zbl0729.76070MR1099693
  20. D.G. Schaeffer, A regularity theorem for conservation laws, Adv. in Math., 11 (1973), 368-386. Zbl0267.35009MR326178
  21. D. Serre, Systèmes de lois de conservation I, Diderot éditeur, arts et sciences. MR1459988
  22. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New-York, (1983). Zbl0807.35002MR688146
  23. L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires, Lecture Notes in Math., 665, Springer,Berlin, (1977), 228-241. Zbl0414.35068
  24. A. Vasseur, Contributions à l’approche cinétique des systèmes de lois de conservation hyperboliques, Thèse de doctorat de l’université Paris 6 (1999). 
  25. A. I. Volpert, The space BV and quasilinear equations, Mat. Sb. 73, (1967). English translation : Math. USSR Sb. 2 (1967), 225-267. Zbl0168.07402MR216338
  26. K. Zumbrun, Decay rates for nonconvex systems of conservation laws, Comm. Pure Appl. Math., Vol XLVI (1993), 353-386. Zbl0799.35154MR1202961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.