Stabilité d’ondes progressives de lois de conservation scalaires
Denis Serre[1]
- [1] UMPA, UMR # 5669 CNRS-ENS Lyon, Ecole Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07
Séminaire Équations aux dérivées partielles (1998-1999)
- Volume: 1998-1999, page 1-11
Access Full Article
topAbstract
topHow to cite
topSerre, Denis. "Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-11. <http://eudml.org/doc/10982>.
@article{Serre1998-1999,
abstract = {A powerfull method has been developped in [2] for the study of $L^1$-stability of travelling waves in conservation laws or more generally in equations which display $L^1$-contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.},
affiliation = {UMPA, UMR # 5669 CNRS-ENS Lyon, Ecole Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07},
author = {Serre, Denis},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {radiating gas; shock fronts},
language = {fre},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires},
url = {http://eudml.org/doc/10982},
volume = {1998-1999},
year = {1998-1999},
}
TY - JOUR
AU - Serre, Denis
TI - Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 11
AB - A powerfull method has been developped in [2] for the study of $L^1$-stability of travelling waves in conservation laws or more generally in equations which display $L^1$-contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.
LA - fre
KW - radiating gas; shock fronts
UR - http://eudml.org/doc/10982
ER -
References
top- C. Abourjaily, P. Bénilan. Symmetrization of quasi-linear parabolic problems. Preprint (1996), Besançon. Zbl1044.35512MR1682189
- H. Freistühler, D. Serre. -stability of shock waves in scalar viscous conservation laws. Comm. Pure & Appl. Math, 51 (1998), pp 291-301. Zbl0907.76046MR1488516
- H. Freistühler, D. Serre. The -stability of boundary layers for scalar viscous conservation laws. Preprint (1998). Zbl0993.35063MR1488516
- K. Ito. BV-solutions of the hyperbolic-elliptic system for a radiating gas. A paraî tre.
- S. Kawashima, S. Nishibata. Shock waves for a model system of a radiatin gas. SIAM J. Math. Anal., 30 (1999), pp 95-117. Zbl0924.35082MR1646685
- S. Kawashima, S. Nishibata. Weak solutions with a shock to a model system of the radiating gas. Sci. Bull. Josai Univ. (1998), Special issue no. 5, pp 119-130. Zbl0915.76074MR1622388
- C. Mascia, R. Natalini. nonlinear stability of travelling waves for a hyperbolic system with relaxation. J. Diff. Equations, 132 (1996), pp 275-292. Zbl0879.35099MR1422120
- D. Serre. -decay and the stability of shock profiles. Proceedings, Prague 1998. A paraî tre. Zbl0938.35098
- D. Serre. Stabilité des ondes de choc de viscosité qui peuvent être caractéristiques. Prepublication (1994).
- D. Serre. Systèmes de lois de conservation, I. Diderot arts & Sci. (1996). Paris. MR1459988
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.