Stabilité L 1 d’ondes progressives de lois de conservation scalaires

Denis Serre[1]

  • [1] UMPA, UMR # 5669 CNRS-ENS Lyon, Ecole Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-11

Abstract

top
A powerfull method has been developped in [2] for the study of L 1 -stability of travelling waves in conservation laws or more generally in equations which display L 1 -contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.

How to cite

top

Serre, Denis. "Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-11. <http://eudml.org/doc/10982>.

@article{Serre1998-1999,
abstract = {A powerfull method has been developped in [2] for the study of $L^1$-stability of travelling waves in conservation laws or more generally in equations which display $L^1$-contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.},
affiliation = {UMPA, UMR # 5669 CNRS-ENS Lyon, Ecole Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07},
author = {Serre, Denis},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {radiating gas; shock fronts},
language = {fre},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires},
url = {http://eudml.org/doc/10982},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Serre, Denis
TI - Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 11
AB - A powerfull method has been developped in [2] for the study of $L^1$-stability of travelling waves in conservation laws or more generally in equations which display $L^1$-contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.
LA - fre
KW - radiating gas; shock fronts
UR - http://eudml.org/doc/10982
ER -

References

top
  1. C. Abourjaily, P. Bénilan. Symmetrization of quasi-linear parabolic problems. Preprint (1996), Besançon. Zbl1044.35512MR1682189
  2. H. Freistühler, D. Serre. L 1 -stability of shock waves in scalar viscous conservation laws. Comm. Pure & Appl. Math, 51 (1998), pp 291-301. Zbl0907.76046MR1488516
  3. H. Freistühler, D. Serre. The L 1 -stability of boundary layers for scalar viscous conservation laws. Preprint (1998). Zbl0993.35063MR1488516
  4. K. Ito. BV-solutions of the hyperbolic-elliptic system for a radiating gas. A paraî tre. 
  5. S. Kawashima, S. Nishibata. Shock waves for a model system of a radiatin gas. SIAM J. Math. Anal., 30 (1999), pp 95-117. Zbl0924.35082MR1646685
  6. S. Kawashima, S. Nishibata. Weak solutions with a shock to a model system of the radiating gas. Sci. Bull. Josai Univ. (1998), Special issue no. 5, pp 119-130. Zbl0915.76074MR1622388
  7. C. Mascia, R. Natalini. L 1 nonlinear stability of travelling waves for a hyperbolic system with relaxation. J. Diff. Equations, 132 (1996), pp 275-292. Zbl0879.35099MR1422120
  8. D. Serre. L 1 -decay and the stability of shock profiles. Proceedings, Prague 1998. A paraî tre. Zbl0938.35098
  9. D. Serre. Stabilité des ondes de choc de viscosité qui peuvent être caractéristiques. Prepublication (1994). 
  10. D. Serre. Systèmes de lois de conservation, I. Diderot arts & Sci. (1996). Paris. MR1459988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.