Faisceaux amples et très amples
Séminaire Bourbaki (1976-1977)
- Volume: 19, page 46-58
- ISSN: 0303-1179
Access Full Article
topHow to cite
topReferences
top- [1] E. Bombieri - Canonical models of surface of general type, Publ. I.H.E.S., 42(1973), p. 171-220. Zbl0259.14005MR318163
- [2] K. Kodaira - Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan, 20(1968), p. 170-192. Zbl0157.27704MR224613
- [3] D. Lieberman and D. Mumford - Matsusaka's big theorem, Proc. of the AMS Summer Institute1974, Arcata, Zbl0321.14004
- [4] T. Matsusaka - On canonically polarized varieties II, Amer. Journ. Math., 92(1970), p. 283-292. Zbl0195.22802MR263816
- [5] T. Matsusaka - Polarized varieties with a given Hilbert polynamial, Amer. Journ. Math., 94(1972), p. 1027-1077. Zbl0256.14004MR337960
- [6] T. Matsusaka and D. Mumford - Two fundamental theorems on deformations of polarized varieties, Amer. Journ. Math., 86(1964), p. 668-683. Zbl0128.15505MR171778
- [7] A. Mayer - Families of K3 surfaces, Nagoya Math. Journ., 48(1972), p. 1-17 Zbl0244.14012MR330172
- [8] M. Raynaud - Faisceaux amples sur les schémas en groupes, Lecture Notes in Math., n° 119, Springer, 1970. Zbl0195.22701MR260758
- [9] B. Saint-Donat - Projective models of K-3 surfaces, Thèse
- [10] A. Weil - Variétés kählériennes, Paris, Hermann, 1958. Zbl0137.41103MR111056