Résultats de convergence et de non-convergence de l’équation de Von-Neumann périodique vers l’équation de Boltzmann quantique.

François Castella[1]

  • [1] CNRS et IRMAR - Université de Rennes 1 - Campus de Beaulieu, 35042 Rennes Cedex - France.

Séminaire Équations aux dérivées partielles (1999-2000)

  • Volume: 1999-2000, page 1-16

How to cite

top

Castella, François. "Résultats de convergence et de non-convergence de l’équation de Von-Neumann périodique vers l’équation de Boltzmann quantique.." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-16. <http://eudml.org/doc/10995>.

@article{Castella1999-2000,
affiliation = {CNRS et IRMAR - Université de Rennes 1 - Campus de Beaulieu, 35042 Rennes Cedex - France.},
author = {Castella, François},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Résultats de convergence et de non-convergence de l’équation de Von-Neumann périodique vers l’équation de Boltzmann quantique.},
url = {http://eudml.org/doc/10995},
volume = {1999-2000},
year = {1999-2000},
}

TY - JOUR
AU - Castella, François
TI - Résultats de convergence et de non-convergence de l’équation de Von-Neumann périodique vers l’équation de Boltzmann quantique.
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/10995
ER -

References

top
  1. J. Bourgain, F. Golse, B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas, Comm. Math. Phys., Vol. 190, p. 491-508 (1998). Zbl0910.60082MR1600299
  2. R.W. Boyd, Nonlinear Optics, Academic Press (1992). 
  3. F. Castella, On the derivation of a Quantum Boltzmann Equation from the periodic Von-Neumann equation, Math. Mod. An. Num., Vol. 33, N. 2, p. 329-350 (1999). Zbl0954.82023MR1700038
  4. F. Castella, Travail en cours. 
  5. F. Castella, P. Degond, From the Von-Neumann equation to the Quantum Boltzmann equation in a deterministic framework, C. Rend. Acad. Sci., t. 329, sér. I, p. 231-236 (1999). Zbl0930.35146MR1711066
  6. F. Castella, P. Degond, From the Von-Neumann equation to the Quantum Boltzmann equation in a deterministic framework, Preprint (1999). Zbl1034.82033MR1711066
  7. F. Castella, A. Plagne, A distribution result for slices of sums of squares, soumis. Zbl1019.11025
  8. F. Castella, A. Plagne, A non-convergence result from the periodic Schrödinger equation towards the Quantum Boltzmann equation, travail en cours. Zbl1080.82014
  9. M. Combescot, Is there a generalized Fermi Golden Rule ?, Preprint (1999). 
  10. L. Erdös, H.T. Yau, Linear Boltzmann equation as scaling limit of quantum Lorentz gas, A paraître dans CPAM. Zbl0894.35027
  11. T.G. Ho, L.J. Landau, A.J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys., Vol. 5, N. 2, p. 209-298 (1993). Zbl0816.46079MR1223523
  12. R. Jancel, Foundations of Classical and Quantum Statistical Mechanics, Pergamon, Braunschweig (1969). MR247817
  13. W. Kohn, J.M. Luttinger, Phys. Rev., Vol. 108, p. 590 (1957). Zbl0092.21901MR96408
  14. J.B. Keller, G. Papanicolaou, L. Ryzhik, Transport equations for elastic and other waves in random media, Preprint (1996). Zbl0954.74533MR1427483
  15. R. Kubo, J. Phys. Soc. Jap., Vol. 12 (1958). 
  16. L.J. Landau, Observation of Quantum Particles on a Large Space-Time Scale, J. Stat. Phys., Vol. 77, N. 1-2, pp. 259-309 (1994). Zbl0860.60097MR1300536
  17. G. Lindblad, On the generators of Quantum dynamical semigroups, Comm. Math. Phys., Vol. 48, pp. 119-130 (1976). Zbl0343.47031MR413878
  18. A. C. Newell, J. V. Moloney, Nonlinear Optics, Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company (1992). MR1163192
  19. F. Nier, Asymptotic Analysis of a scaled Wigner equation and Quantum Scattering, Transp. Theor. Stat. Phys., Vol. 24, N. 4 et 5, p. 591-629 (1995). Zbl0870.45003MR1321368
  20. F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. Ec. Norm. Sup., 4. Sér., t. 29, p. 149-183 (1996). Zbl0858.35106MR1373932
  21. W. Pauli, Festschrift zum 60. Geburtstage A. Sommerfelds, p. 30, Hirzel, Leipzig (1928). 
  22. M. Reed, B. Simon, Methods of modern mathematical physics, Academic Press (1972). Zbl0242.46001MR493419
  23. M. Sargent, M.O. Scully, W.E. Lamb, Laser Physics, Addison-Wesley (1977). 
  24. H. Spohn, Derivation of the transport equation for electrons moving through random impurities, J. Stat. Phys., Vol. 17, N. 6, p. 385-412 (1977). Zbl0964.82508MR471824
  25. H. Spohn, Kinetic equations from Hamiltonian dynamics : Markovian limits, Rev. Mod. Phys., Vol. 53, N. 3, pp. 569-615 (1980). MR578142
  26. H. Spohn, Large Scale Dynamics of interacting particles, Springer, Berlin (1991). Zbl0742.76002
  27. L. Van Hove, Physica, Vol. 21 p. 517 (1955). Zbl0065.19505MR71346
  28. L. Van Hove, Physica, Vol. 23 p. 441 (1957). MR89576
  29. L. Van Hove, in Fundamental Problems in Statistical Mechanics, E.G.D. Cohen ed., p. 157 (1962). 
  30. R. Zwanzig, Quantum Statistical Mechanics, P.H.E. Meijer ed., Gordon and Breach, New-York (1966). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.