A semi-classical picture of quantum scattering

Francis Nier

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 2, page 149-183
  • ISSN: 0012-9593

How to cite

top

Nier, Francis. "A semi-classical picture of quantum scattering." Annales scientifiques de l'École Normale Supérieure 29.2 (1996): 149-183. <http://eudml.org/doc/82407>.

@article{Nier1996,
author = {Nier, Francis},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {asymptotics; Schrödinger equations; quantum scattering; macroscopic scale; microscopic scale},
language = {eng},
number = {2},
pages = {149-183},
publisher = {Elsevier},
title = {A semi-classical picture of quantum scattering},
url = {http://eudml.org/doc/82407},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Nier, Francis
TI - A semi-classical picture of quantum scattering
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 2
SP - 149
EP - 183
LA - eng
KW - asymptotics; Schrödinger equations; quantum scattering; macroscopic scale; microscopic scale
UR - http://eudml.org/doc/82407
ER -

References

top
  1. [1] R. ABRAHAM and J. E. MARSDEN, Foundation of Mechanics, Addison Wesley, 1985. 
  2. [2] W. O. AMREIN, J. M. JAUCH and K. B. SINHA, Scattering Theory in Quantum Mechanics, W. A. Benjamin, 1977. Zbl0376.47001MR58 #14631
  3. [3] F. A. BEREZIN and M. A. SHUBIN, The Schrödinger Equation, volume 66 of Mathematics and its Applications, Kluwer Academic Publishers, 1991. Zbl0749.35001MR93i:81001
  4. [4] J. M. BONY, Second Microlocalization and Propagation of Singularities for Semi-linear Hyperbolic Equations (Hyperbolic Equations and Related Topics, Mizohata ed. Kinokuya, 1986, pp. 11-49). Zbl0669.35073MR89e:35099
  5. [5] J. M. BONY and J. Y. CHEMIN, Espaces fonctionnels associés au calcul de Weyl-Hörmander (Bull. Soc. Math. France, 1994, pp. 77-118). Zbl0798.35172MR95a:35152
  6. [6] J. M. BONY and N. LERNER, Quantification asymptotique et microlocalisation d'ordre supérieur I (Ann. Scient. Ec. Norm. Sup., 4e série, Vol. 22, 1989, pp. 377-433). Zbl0753.35005MR90k:35276
  7. [7] O. BRATELLI and D. ROBINSON, Operator Algebras and Quantum Statistical Physics, Springer-Verlag, 1979-1981. 
  8. [8] C. COHEN-TANNOUDJI, B. DIU and F. LALOË, Mécanique Quantique, Hermann, 1973. 
  9. [9] P. DEIFT and E. TRUBOWITZ, Inverse Scattering on the Line (Comm. on Pure and Applied Math., Vol. 32, 1979, pp. 121-251). Zbl0388.34005MR80e:34011
  10. [10] J. DEREZINSKI and C. GÉRARD, Asymptotic Completeness of N-Particles Systems, Springer Verlag, to appear. Zbl0784.47055
  11. [11] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1964. Zbl0152.32902MR30 #1404
  12. [12] J. D. DOLLARD, Scattering into Cones 1 : Potential Scattering (Commun. in Math. Phys., Vol. 12, 1969, pp. 193-203). 
  13. [13] J. J. DUISTERMAAT, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities (Comm. on Pure and Applied Math., Vol. 27, 1974, pp. 207-281). Zbl0285.35010MR53 #9306
  14. [14] M. V. FEDORYUK and V. P. MASLOV, Semi-Classical Approximation in Quantum Mechanics, Reidel Publishing Company, 1985. Zbl0458.58001
  15. [15] C. FERMANIAN-KAMMERER, Équation de la chaleur et mesures semi-classiques, Thèse, Univ. Paris XI, 1994. 
  16. [16] P. GÉRARD, Mesures semi-classiques et ondes de Bloch (Séminaire EDPX 1990-1991, (16)). Zbl0739.35096
  17. [17] P. GÉRARD and E. LEICHTNAM, Ergodic Properties of Eigenfunctions for the Dirichlet Problem (Duke Math. J., Vol. 71 (2), 1993, pp. 559-607). Zbl0788.35103MR94i:35146
  18. [18] B. HELFFER, A. MARTINEZ and D. ROBERT, Ergodicité et limite semi-classique (Commun. in Math. Phys., Vol. 109, 1987, pp. 313-326). Zbl0624.58039MR88e:81029
  19. [19] B. HELFFER and J. SJÖSTRAND, Équation de Harper (Lect. Notes in Physics, Vol. 345, 1989, pp. 118-197). Zbl0699.35189
  20. [20] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, volume 3, Springer Verlag, 1985. Zbl0601.35001
  21. [21] H. ISOZAKI and H. KITADA, A Remark on the Microlocal Resolvent Estimates for Two-Body Schrödinger Operators (RIMS Kyoto University, 1985). Zbl0611.35090
  22. [22] H. ISOZAKI and H. KITADA, Scattering Matrices for Two-Body Schrödinger Operators (Sci. Papers College Arts Sci. Univ. Tokyo, Vol. 35, 1985, pp. 81-107). Zbl0615.35065MR87k:35196
  23. [23] P. L. LIONS and T. PAUL, Sur les mesures de Wigner (Rev. Mat. Iberoamericana, Vol. 9 (3), 1993, pp. 553-618). Zbl0801.35117MR95a:58124
  24. [24] A. MESSIAH, Mécanique Quantique, Dunod, 1965. 
  25. [25] F. NIER, Schrödinger-Poisson Systems in dimension d ≤ 3 : the whole space case (Proc. Roy. Soc. Edin., Vol. 123 A, 1993, pp. 1179-1201). Zbl0807.35119MR94m:35217
  26. [26] F. NIER, Asymptotic Analysis of a Scaled Wigner Equation (Transp. Theory Stat. Phys., Vol. 24 (4-5), 1995, pp. 591-628). Zbl0870.45003MR96c:82039
  27. [27] M. REED and B. SIMON, Methods of Modern Mathematical Physics, Acad. Press, 1975. 
  28. [28] D. ROBERT, Autour de l'approximation semi-classique, volume 68 of Progress in Mathematics, Birkhaüser, 1987. Zbl0621.35001MR89g:81016
  29. [29] W. THIRRING, Quantum Mechanics of Atoms and Molecules, volume 3 of A Course in Mathematical Physics, Springer-Verlag, 1979. Zbl0462.46046
  30. [30] X. P. WANG, Time-Delay Operators in the Semi-classical Limit. II. Short-range Potentials (Trans. Am. Math. Soc., Vol. 322(1), 1990, pp. 395-415). Zbl0714.35064
  31. [31] K. YOSIDA, Functional Analysis, volume 123 of Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer-Verlag, 1968. Zbl0217.16001MR39 #741

Citations in EuDML Documents

top
  1. Rémi Carles, Équation de Schrödinger semi-classique avec potentiel harmonique et perturbation non-linéaire
  2. François Castella, Résultats de convergence et de non-convergence de l’équation de Von-Neumann périodique vers l’équation de Boltzmann quantique.
  3. François Castella, On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation
  4. Rémi Carles, Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation
  5. Luc Miller, Short waves through thin interfaces and 2-microlocal measures
  6. Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
  7. François Castella, Effets dispersifs dans les équations de Schrödinger et de Vlasov
  8. Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
  9. Nicolas Burq, Mesures semi-classiques et mesures de défaut

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.