Orbites périodiques des systèmes hamiltoniens autonomes

Nicole Desolneux-Moulis

Séminaire Bourbaki (1979-1980)

  • Volume: 22, page 156-173
  • ISSN: 0303-1179

How to cite

top

Desolneux-Moulis, Nicole. "Orbites périodiques des systèmes hamiltoniens autonomes." Séminaire Bourbaki 22 (1979-1980): 156-173. <http://eudml.org/doc/109951>.

@article{Desolneux1979-1980,
author = {Desolneux-Moulis, Nicole},
journal = {Séminaire Bourbaki},
keywords = {existence of periodic orbits of autonomous hamiltonian systems; variational methods; neighborhood of the equilibrium; fixed period; cohomological index for a circle action},
language = {fre},
pages = {156-173},
publisher = {Springer-Verlag},
title = {Orbites périodiques des systèmes hamiltoniens autonomes},
url = {http://eudml.org/doc/109951},
volume = {22},
year = {1979-1980},
}

TY - JOUR
AU - Desolneux-Moulis, Nicole
TI - Orbites périodiques des systèmes hamiltoniens autonomes
JO - Séminaire Bourbaki
PY - 1979-1980
PB - Springer-Verlag
VL - 22
SP - 156
EP - 173
LA - fre
KW - existence of periodic orbits of autonomous hamiltonian systems; variational methods; neighborhood of the equilibrium; fixed period; cohomological index for a circle action
UR - http://eudml.org/doc/109951
ER -

References

top
  1. [1] R. Abraham, J.E. Marsden - Foundations of Mechanics, 2nd edition, Benjamin. Zbl0158.42901
  2. [2] H. Amann, E. Zehnder - Non trivial solutions for a class of non resonance problems and applications to non linear differential equations, à paraître. Zbl0452.47077
  3. [3] V.I. Arnold - Méthodes mathématiques de la mécanique classique, éditions Mir. Zbl0385.70001MR474391
  4. [4] V.I. Arnold, A. Avez - Problèmes ergodiques de la mécanique classique, éditions Gauthier-Villars. Zbl0149.21704MR209436
  5. [5] V. Benci, P.H. Rabinowitz - Critical point theorems for indefinite functionals, Inv. Math., Vol 52, fasc. 3(1979), p. 241-274. Zbl0465.49006MR537061
  6. [6] M. Berger - On a family of periodic solutions for Hamiltonian systems, J. Diff. Eq., 10(1971), p. 324-335. Zbl0237.34067MR280802
  7. [7] G.D. Birkhoff - On the periodic motions of dynamical systems, Acta Math., 50(1927), p. 359-379. Zbl53.0733.03MR1555257JFM53.0733.03
  8. [8] D. Clark - On periodic solutions of autonomous Hamiltonian systems of ordinary differential equations, Proc. A.M.S., 39(1973), p. 579-584. Zbl0243.34067MR315217
  9. [9] F.H. Clarke - Periodic solutions to Hamiltonian inclusions, à paraître J. Diff. Eq. Zbl0461.34030
  10. [10] F.H. Clarke, I. Ekeland - Hamiltonian trajectories having prescribed minimal period, Preprint, cahier CEREMADE n° 7822. Note C.R.A.S. t. 287(1978), p. 1013-1015. A paraître Comm. on pure and appl. Math.. Zbl0404.34033MR562546
  11. [11] I. Ekeland - Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Eq., Vol. 34, n° 3 déc. 1979, p. 523-534. Zbl0446.70019MR555325
  12. [12] I. Ekeland, J.M. Lasry - Nombre de solutions périodiques des équations de Hamilton, Preprint cahier CEREMADE n° 7902, à paraître Annals of Math. Zbl0397.34049MR525925
  13. [13] E.R. Fadell, P.H. Rabonowitz - Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., Vol. 45, fasc. 2(1978), p. 139-174. Zbl0403.57001MR478189
  14. [14] A.I. Fet, L.A. Lusternik - Variational problems on closed manifolds, Dokl. Akad. Nauk S.S.S.R., 81(1951), p. 17-18. Zbl0045.20903MR44760
  15. [15] W.B. Gordon - A theorem on the existence of periodic solutions to Hamiltonian systems with convex potential, J. Diff. Eq., 10(1971), p. 324-335. Zbl0231.35006MR292113
  16. [16] Y. Hagihara - Celestial Mechanics, Jap. Soc. for promotion of science, Tokyo1975. MR478841
  17. [17] J. Horn - Beitrage zur Theorie der kleinen Schwingungen, Z. Math. Phys., 48(1903), p. 400-434. Zbl34.0764.01JFM34.0764.01
  18. [18] W. Klingenberg - Closed geodesics, Grundlehren der Mathematischen Wissenschaften, Vol. 230, Springer1978. Zbl0397.58018MR478069
  19. [19] J.L. Lagrange - Mémoire sur la théorie de la variation des éléments des planètes, Mem. classe Sci. Math. Phys. Inst. France, 1808, Oeuvres complètes, tome VI, p. 713-768. 
  20. [20] L. Lusternik, L. Schnirelman - Méthodes topologiques dans les problèmes variationnels, Hermann, Paris, 1934. Zbl0011.02803
  21. [21] A. Lyapunov - Problème général de la stabilité des mouvements, Ann. Fac. Sci. de Toulouse, 2(1907), p. 203-474. 
  22. [22] J. Moser - A theorem by A. Weinstein and bifurcation theory, Report of the University Louvain la Neuve, Janv. 1976. Zbl0351.58002
  23. [23] J. Moser - Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Commun. on pure and appl. Math., Vol XXIX, 1976, p. 727-747. Zbl0346.34024MR426052
  24. [24] J. Moser - Proof of a generalized form of a fixed point theorem, Geometry and Topology, Rio de Janeiro, July 1976. Lecture Notes n° 597, Springer, p. 464-494. Zbl0358.58009MR494305
  25. [25] R.S. Palais - Critical point theory and the minimax principle, Global Analysis, Proc. A.M.S., Vol. XV, p. 185-212. Zbl0212.28902MR264712
  26. [26] H. Poincaré - Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, 1892. JFM25.1847.03
  27. [27] P.H. Rabinowitz - Periodic solutions of Hamiltonian systems, Comm. pure and appl. Math., Vol. XXXI, 1978, p. 157-184. Zbl0358.70014MR467823
  28. [28] J.T. Schwartz - Non linear functional analysis, Gordon and Breach1969. Zbl0203.14501
  29. [29] C.L. Siegel, J.K. Moser - Lectures on celestial mechanics, Grundlehren des Math. Wiss., n° 187, Springer1971. Zbl0312.70017MR502448
  30. [30] H. Seifert - Periodische Bewegungen mechanischer system, Math. Zeits.51(1948), p. 197-216. Zbl0030.22103MR25693
  31. [31] J. Vey - Orbites périodiques d'un système hamiltonien au voisinage d'un point d'équilibre, Ann. Sci. Nor. Sup., Pisa ser. 4 Vol. 5(1978), p. 757-787. Zbl0391.70018MR519892
  32. [32] A. Weinstein - Lagrangian submanifolds and hamiltonian systems, Ann. of Math., 98(1973), p. 377-410. Zbl0271.58008MR331428
  33. [33] A. Weinstein - Normal modes for non linear hamiltonian systems, Inv. Math., 20(1973), p. 47-57. Zbl0264.70020MR328222
  34. [34] A. Weinstein - Periodic orbits for convex hamiltonian systems, Ann. of Math., 108(1978), p. 507-518. Zbl0403.58001MR512430
  35. [35] A. Weinstein - Bifurcations and Hamilton's principle, Math. Zeits., 159(1978), p. 235-248. Zbl0366.58003MR501163
  36. [36] A. Weinstein - On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Eq., Vol. 33, n° 3(1979), p. 353-358. Zbl0388.58020MR543704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.