Existence des applications harmoniques et courbure des variétés

Luc Lemaire

Séminaire Bourbaki (1979-1980)

  • Volume: 22, page 174-195
  • ISSN: 0303-1179

How to cite

top

Lemaire, Luc. "Existence des applications harmoniques et courbure des variétés." Séminaire Bourbaki 22 (1979-1980): 174-195. <http://eudml.org/doc/109952>.

@article{Lemaire1979-1980,
author = {Lemaire, Luc},
journal = {Séminaire Bourbaki},
keywords = {harmonic maps between Riemannian manifolds; Kähler manifolds; curvature},
language = {fre},
pages = {174-195},
publisher = {Springer-Verlag},
title = {Existence des applications harmoniques et courbure des variétés},
url = {http://eudml.org/doc/109952},
volume = {22},
year = {1979-1980},
}

TY - JOUR
AU - Lemaire, Luc
TI - Existence des applications harmoniques et courbure des variétés
JO - Séminaire Bourbaki
PY - 1979-1980
PB - Springer-Verlag
VL - 22
SP - 174
EP - 195
LA - fre
KW - harmonic maps between Riemannian manifolds; Kähler manifolds; curvature
UR - http://eudml.org/doc/109952
ER -

References

top
  1. [1] M. Demazure : Caractérisation de l'espace projectif (conjectures de Hartshorne et de Frankel),Séminaire Bourbaki n° 544 (1979/80). Zbl0469.14008
  2. [2] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc.10 (1978) 1-68. Zbl0401.58003MR495450
  3. [3] — On the construction of harmonic and holomorphic maps between surfaces, à paraître. Zbl0424.31009
  4. [4] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964) 109-160. Zbl0122.40102MR164306
  5. [5] J. Eells and J.C. Wood, Restrictions on harmonic maps of surfaces, Topology15 (1976) 263-266. Zbl0328.58008MR420708
  6. [6] W.-D. Garber, S.N. Ruijsenaars and E. Seiler, On finite action solutions of the nonlinear σ-model, à paraître. 
  7. [7] R.E. Greene and H.H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier25 (1975) 215-235. Zbl0307.31003MR382701
  8. [8] R.S. Hamilton, Harmonic maps of manifolds with boundary, Springer Lecture Notes471 (1975). Zbl0308.35003MR482822
  9. [9] P. Hartman, On homotopic harmonic maps, Can. J. Math.19 (1967) 673-687. Zbl0148.42404MR214004
  10. [10] S. Hildebrandt, H. Kaul and K.O. Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math.138 (1977) 1-16. Zbl0356.53015MR433502
  11. [11] L. Lemaire, Applications harmoniques de variétés produits, Comm. Math. Helv.52 (1977) 11-24. Zbl0352.58015MR448411
  12. [12] , Applications harmoniques de surfaces riemanniennesJ. Diff. Geom.13 (1978) 51-78. Zbl0388.58003MR520601
  13. [13] , Harmonic nonholomorphic maps from a surface to a sphere, Proc. Amer. Math. Soc.71 (1978) 299-304. Zbl0388.58004MR501102
  14. [14] A. Lichnerowicz, Applications harmoniques et variétés kählériennes, Symp. Math.IIIBologna (1970) 341-402. Zbl0193.50101MR262993
  15. [15] — , Variétés kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative, J. Diff. Geom.6 (1972) 47-94. Zbl0231.53063MR300228
  16. [16] E. Mazet, La formule de la variation seconde de l'énergie au voisinage d'une application harmonique, J. Diff. Geom.8 (1973) 279-296. Zbl0301.53012MR336767
  17. [17] S. Mori, Projective manifolds with ample tangent bundles, à paraître. Zbl0423.14006
  18. [18] C.B. Morrey, The problem of Plateau on a Riemannian manifold, Ann. of Math.49 (1948) 807-851. Zbl0033.39601MR27137
  19. [19] — , Multiple integrals in the calculus of variations, Grundlehren130, Springer (1966). Zbl0142.38701
  20. [20] T. Nagano and B. Smyth, Minimal varieties and harmonic maps in tori, Comm. Math. Helv.50 (1975) 249-265. Zbl0326.53055MR390974
  21. [21] E.A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc.149 (1970) 569-573. Zbl0199.56102MR259768
  22. [22] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of two-spheres, Bull. Amer. Math. Soc.83 (1977) 1033-1036. Zbl0375.49016MR448408
  23. [23 ] — , même titre, à paraître. 
  24. [24] — , Minimal immersions of compact Riemann surfaces, à paraître. 
  25. [25] J.H. Sampson, Some properties and applications of harmonic mappings, Ann. Ec. Norm. Sup.11 (1978) 211-228. Zbl0392.31009MR510549
  26. [26] R. Schoen and S.-T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds of non-negative Ricci curvature, Comm. Math. Helv.51 (1976) 333-341. Zbl0361.53040MR438388
  27. [27] — , Existence of incompressible minimal surfaces and the topology of three-manifolds with non-negative scalar curvature, Ann. of Math.110 (1979) 127-142. Zbl0431.53051MR541332
  28. [28] — , On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys.65 (1979) 45-76. Zbl0405.53045MR526976
  29. [29] — , Compact group actions and the topology of manifolds with non-positive curvature, Topology18 (1979) 361-380. Zbl0424.58012MR551017
  30. [30] Y.-T. Siu, Complex-analyticity of harmonic maps and strong rigidity of compact Kähler manifolds, Proc. Natl. Acad. Sci. U.S.A.76 (1979) 2107-2108. Zbl0424.53038MR530174
  31. [31] — , The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, à paraître. 
  32. [32] Y.-T. Siu and S.-T. Yau, Compact Kähler manifolds of positive bisectional curvature, à paraître. Zbl0442.53056
  33. [33] R.T. Smith, Harmonic mappings of spheres, Amer. J. Math.97 (1975) 364-385. Zbl0321.57020MR391127
  34. [34] — , The second variation formula for harmonic mappings, Proc. Amer. Math. Soc.47 (1975) 229-236. Zbl0303.58008MR375386
  35. [35] K. Uhlenbeck, Harmonic maps : a direct method in the calculus of variations, Bull. Amer. Math. Soc.76 (1970) 1082-1087. Zbl0208.12802MR264714
  36. [36] J.C. Wood, A note on the fundamental group of a manifold of negative curvature, Math. Proc. Cambridge Phil. Soc.83 (1978) 415-417. Zbl0374.53017MR494252
  37. [37] — , An extension theorem for holomorphic mappings, à paraître. 
  38. [38] W.H. Meeks III and S.-T. Yau : The classical Plateau problem and the topology of three-dimensional manifolds, à paraître. Zbl0489.57002
  39. [39] — : Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, à paraître. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.