The work of Mazur and Wiles on cyclotomic fields

John Coates

Séminaire Bourbaki (1980-1981)

  • Volume: 23, page 220-242
  • ISSN: 0303-1179

How to cite


Coates, John. "The work of Mazur and Wiles on cyclotomic fields." Séminaire Bourbaki 23 (1980-1981): 220-242. <>.

author = {Coates, John},
journal = {Séminaire Bourbaki},
keywords = {cyclotomic fields; ideal class group; characteristic power series; Iwasawa's main conjecture; unramified extensions; Mazur and Wiles' main theorem; p-adic L-function},
language = {eng},
pages = {220-242},
publisher = {Springer-Verlag},
title = {The work of Mazur and Wiles on cyclotomic fields},
url = {},
volume = {23},
year = {1980-1981},

AU - Coates, John
TI - The work of Mazur and Wiles on cyclotomic fields
JO - Séminaire Bourbaki
PY - 1980-1981
PB - Springer-Verlag
VL - 23
SP - 220
EP - 242
LA - eng
KW - cyclotomic fields; ideal class group; characteristic power series; Iwasawa's main conjecture; unramified extensions; Mazur and Wiles' main theorem; p-adic L-function
UR -
ER -


  1. [1] Coates, J., p-adic L-functions and Iwasawa's theory, in Algebraic Number Fields (ed. A. Fröhlich), Academic Press, (1977), 269-353. Zbl0393.12027MR460282
  2. [2] Coates, J., Sinnott, W., Integrality properties of the values of partial zeta functions, Proc. London Math. Soc.34(1977), 365-384. Zbl0354.12009MR439815
  3. [3] Deligne, P., Rapoport, M., Schémas de modules de courbes elliptiques, in Springer L. N., 349(1973). Zbl0281.14010MR337993
  4. [4] Dwyer, W., Friedlander, E., Etale K-theory and arithmetic, (to appear). Zbl0494.18009MR648533
  5. [5] Greenberg, R., On p-adic L-functions and cyclotomic fields II, Nagoya Math. J.67(1977), 139-158 Zbl0373.12007MR444614
  6. [6] Iwasawa, K., Some modules in the theory of cyclotomic fields, J. Math. Soc. Japan16(1964), 42-82. Zbl0125.29207MR215811
  7. [7] Iwasawa, K., On p-adic L-functions, Ann. of Math.89(1969), 198-205. Zbl0186.09201MR269627
  8. [8] Iwasawa, K., On Zl-extensions of algebraic number fields, Ann. of Math.98(1973), 246-326. Zbl0285.12008MR349627
  9. [9] Iwasawa, K., Lectures on p-adic L-functions, Ann. Math. Studies74, Princeton (1972). Zbl0236.12001MR360526
  10. [10] Kubert, D., Lang, S., The index of Stickelberger ideals of order 2 and cuspidal class numbers, Math. Ann.237(1978), 213-232. Zbl0371.12023MR508753
  11. [11] Kubota, T., Leopoldt, H., Eine p-adische Theorie der zetawerte, Crelle213(1964), 328-339. Zbl0186.09103
  12. [12] Mazur, B., Rational isogenies of prime degree, Inventiones Math.44(1978), 129-162. Zbl0386.14009MR482230
  13. [13] Mazur, B., Wiles, A., Class fields of abelian extensions of Q , (to appear). Zbl0545.12005MR742853
  14. [14] Northcott, D., Finite Free Resolutions, Cambridge Tracts71, Cambridge, 1976. Zbl0328.13010MR460383
  15. [15] Ribet, K., A modular construction of unramified p-extensions of Q(μp) , Inventiones Math.34(1976), 151-162. Zbl0338.12003
  16. [16] Serre, J.-P., Classes des corps cyclotomiques, Séminaire Bourbaki, exp. 174, (1958/59). Zbl0119.27603
  17. [17] Serre, J.-P., Formes modulaires et fonctions zêta p-adiques, in Springer L. N.350(1973). Zbl0277.12014MR404145
  18. [18] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan11, IwanamiShoten and Princeton (1971). Zbl0221.10029MR314766
  19. [19] Soulé, C., K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Inventiones Math.55(1979), 251-295. Zbl0437.12008MR553999
  20. [20] Tate, J., p-divisible groups, in Proceedings of a Conference on Local Fields, Springer (1967), 158-183. Zbl0157.27601MR231827
  21. [21] Wagstaff, S., The irregular primes to 125000 , Math. Comp.32(1978), 583-591. Zbl0377.10002MR491465
  22. [22] Wiles, A., Modular curves and the class group of Q(ζp) , Inventiones Math.58(1980), 1-35. Zbl0436.12004
  23. [23] Langlands, R., Modular forms and l-adic representations, in Springer L. N.349(1973). Zbl0279.14007MR354617

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.