Modular Curves and the Class Group of Q(...p).

Andrew Wiles

Inventiones mathematicae (1980)

  • Volume: 58, page 1-36
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Wiles, Andrew. "Modular Curves and the Class Group of Q(...p).." Inventiones mathematicae 58 (1980): 1-36. <http://eudml.org/doc/142712>.

@article{Wiles1980,
author = {Wiles, Andrew},
journal = {Inventiones mathematicae},
keywords = {modular curve; ideal class group; Galois module structure},
pages = {1-36},
title = {Modular Curves and the Class Group of Q(...p).},
url = {http://eudml.org/doc/142712},
volume = {58},
year = {1980},
}

TY - JOUR
AU - Wiles, Andrew
TI - Modular Curves and the Class Group of Q(...p).
JO - Inventiones mathematicae
PY - 1980
VL - 58
SP - 1
EP - 36
KW - modular curve; ideal class group; Galois module structure
UR - http://eudml.org/doc/142712
ER -

Citations in EuDML Documents

top
  1. S. Kamienny, Modular curves and unramified extensions of number fields
  2. John Coates, The work of Mazur and Wiles on cyclotomic fields
  3. Ehud De Shalit, On certain Galois representations related to the modular curve X 1 ( p )
  4. B. Mazur, A. Wiles, On p -adic analytic families of Galois representations
  5. Jacques Tilouine, Théorie d'Iwasawa classique et de l'algèbre de Hecke ordinaire
  6. Jacques Tilouine, Un sous-groupe p -divisible de la jacobienne de X 1 ( N p r ) comme module sur l’algèbre de Hecke

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.