Affine Lie algebras and modular forms
Séminaire Bourbaki (1980-1981)
- Volume: 23, page 258-276
- ISSN: 0303-1179
Access Full Article
topHow to cite
topMacDonald, I. G.. "Affine Lie algebras and modular forms." Séminaire Bourbaki 23 (1980-1981): 258-276. <http://eudml.org/doc/109977>.
@article{MacDonald1980-1981,
author = {MacDonald, I. G.},
journal = {Séminaire Bourbaki},
keywords = {affine Lie algebras; Kac-Moody Lie algebras; identities for theta functions; modular forms; Dedekind eta-function},
language = {eng},
pages = {258-276},
publisher = {Springer-Verlag},
title = {Affine Lie algebras and modular forms},
url = {http://eudml.org/doc/109977},
volume = {23},
year = {1980-1981},
}
TY - JOUR
AU - MacDonald, I. G.
TI - Affine Lie algebras and modular forms
JO - Séminaire Bourbaki
PY - 1980-1981
PB - Springer-Verlag
VL - 23
SP - 258
EP - 276
LA - eng
KW - affine Lie algebras; Kac-Moody Lie algebras; identities for theta functions; modular forms; Dedekind eta-function
UR - http://eudml.org/doc/109977
ER -
References
top- [1] M. Adler and P. van Moerbeke, Completely integrable systems, Kac-Moody Lie algebras and curves, Adv.in Math.36(1980) 1-44. Zbl0455.58017
- [2] M. Adler and P. van Moerbeke, Linearisation of Hamiltonian systems, Jacobi varieties and representation theory, Adv. in Math.38(1980) 318-379. Zbl0455.58010MR597730
- [3] J.H. Conway and S.P. Norton, Monstrous moonshine, Bull. LMS11(1979) 308-339. Zbl0424.20010MR554399
- [4] M. Demazure, Identités de Macdonald, Sém.Bourbaki 483 (1976). Zbl0345.17003
- [5] A. Feingold and J. Lepowsky, The Weyl-Kac character formula and power series identities, Adv. in Math.29(1978) 271-309. Zbl0391.17009MR509801
- [6] I.B. Frenkel, Orbital theory for affine Lie algebras, Inv. Math. (to appear). Zbl0548.17007MR752823
- [7] I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Inv. Math.62(1980) 23-66. Zbl0493.17010MR595581
- [8] H. Garland, Dedekind's n-function and the cohomology of infinite-dimensional Lie algebras, PNAS72(1975) 2493-2495. Zbl0322.18010MR387361
- [9] H. Garland, The arithmetic theory of loop groups, preprint. Zbl0475.17004MR601519
- [10] H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas, Inv. Math.34(1976) 37-76. Zbl0358.17015MR414645
- [11] V.G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR Izvestiya2(1968) 1271-1311. Zbl0222.17007MR259961
- [12] V.G. Kac, Infinite-dimensional Lie algebras and Dedekind's n-function, Funct.Anal. Appl.8(1974) 68-70. Zbl0299.17005MR374210
- [13] V.G. Kac, Infinite-dimensional Lie algebras, Dedekind's n-function, classical Möbius formula and the very strange formula, Advances in Math.30(1978) 85-136. Zbl0391.17010MR513845
- [14] V.G. Kac, Infinite root systems, representations of graphs and invariant theory, Inv. Math.56(1980) 57-92. Zbl0427.17001MR557581
- [15] V.G. Kac, An elucidation of "Infinite-dimensional algebras ... and the very strange formula". E8(1) and the cube root of the modular invariant j. Advances in Math.35(1980) 264-273. Zbl0431.17009MR563927
- [16] V.G. Kac and D. Peterson, Affine Lie algebras and Hecke modular forms, Bull. AMS (New Series) 3(1980) 1057-1061. Zbl0457.17007MR585190
- [17] V.G. Kac and D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, preprint. Zbl0584.17007MR750341
- [18] V.G. Kac, D.A. Kazhdan, J. Lepowsky and R.L. Wilson, Realisation of the basic representations of the Euclidean Lie algebras, to appear. Zbl0476.17003
- [19] J. Lepowsky, Macdonald-type identities, Adv. in Math.27(1978) 230-234. Zbl0388.17003MR554353
- [20] J. Lepowsky, Generalised Verma modules, loop space cohomology and Macdonald-type identities, Ann. Scient. ENS (4e série) 12(1979) 169-234. Zbl0414.17007MR543216
- [21] J. Lepowsky and R.L. Wilson, A Lie-theoretic interpretation and proof of the Rogers-Ramanujan identities, preprint. Zbl0449.17010MR663415
- [22] E. Looijenga, Root systems and elliptic curves, Inv. Math.38(1976) 17-32. Zbl0358.17016MR466134
- [23] I.G. Macdonald, Affine root systems and Dedekind's n-function, Inv. Math.15(1972) 92-143. Zbl0244.17005MR357528
- [24] R.V. Moody, A new class of Lie algebras, J. Alg.10(1968) 211-230. Zbl0191.03005MR229687
- [25] R.V. Moody, Euclidean Lie algebras, Can. J. Math.21(1969) 1432-1454. Zbl0194.34402MR255627
- [26] P. Slodowy, Chevalley groups over C((t)) and deformations of simply elliptic singularities, RIMS Kyoto University, Japan, 1981. Zbl0496.14027MR708340
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.