Generalized Verma modules, loop space cohomology and MacDonald-type identities

J. Lepowsky

Annales scientifiques de l'École Normale Supérieure (1979)

  • Volume: 12, Issue: 2, page 169-234
  • ISSN: 0012-9593

How to cite

top

Lepowsky, J.. "Generalized Verma modules, loop space cohomology and MacDonald-type identities." Annales scientifiques de l'École Normale Supérieure 12.2 (1979): 169-234. <http://eudml.org/doc/82034>.

@article{Lepowsky1979,
author = {Lepowsky, J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Kac-Moody-Lie algebras; cohomology; Macdonald identities; loop space; generalized Verma modules},
language = {eng},
number = {2},
pages = {169-234},
publisher = {Elsevier},
title = {Generalized Verma modules, loop space cohomology and MacDonald-type identities},
url = {http://eudml.org/doc/82034},
volume = {12},
year = {1979},
}

TY - JOUR
AU - Lepowsky, J.
TI - Generalized Verma modules, loop space cohomology and MacDonald-type identities
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1979
PB - Elsevier
VL - 12
IS - 2
SP - 169
EP - 234
LA - eng
KW - Kac-Moody-Lie algebras; cohomology; Macdonald identities; loop space; generalized Verma modules
UR - http://eudml.org/doc/82034
ER -

References

top
  1. [1] G. E. ANDREWS, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, G.-C. ROTA, Ed., Addison-Wesley, Reading, Mass., 1976. Zbl0371.10001
  2. [2] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND, Differential Operators on the Base Affine Space and a Study of g-Modules in Lie Groups and Their Representations, Summer School of the Bolyai Janós Math. Soc., I. M. Gelfand, Ed., Division of Wiley and Sons, Halsted Press, New York, 1975, pp. 21-64. Zbl0338.58019MR58 #28285
  3. [3] R. BOTT, (a) An Application of the Morse Theory to the Topology of Lie Groups (Bull. Soc. math. Fr., Vol. 84, 1956, pp. 251-281) ; (b) Homogeneous Vector Bundles (Ann. of Math., 66, 1957, pp. 203-248). Zbl0073.40001MR19,291a
  4. [4] N. BOURBAKI, Groupes et algèbres de Lie, Chap. 4, 5, 6, Hermann, Paris, 1969. 
  5. [5] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, Princeton, 1956. Zbl0075.24305MR17,1040e
  6. [6] C. CHEVALLEY and S. EILENBERG, Cohomology Theory of Lie Groups and Lie Algebras (Trans. Amer. Math. Soc., Vol. 63, 1948, pp. 85-124). Zbl0031.24803MR9,567a
  7. [7] M. DEMAZURE, Identités de MacDonald (Séminaire Bourbaki, 28e année, 1975/1976, No. 483). Zbl0345.17003
  8. [8] J. DIXMIER, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
  9. [9] A. FEINGOLD and J. LEPOWSKY, The Weyl-Kac Character Formula and Power Series Identities (Adv. in Math., Vol. 29, 1978, pp. 271-309). Zbl0391.17009MR83a:17015
  10. [10] H. GARLAND, Dedekind's ƞ-Function and the Cohomology of Infinite Dimensional Lie Algebras [Proc. Nat. Acad. Sc. (U.S.A.), Vol. 72, 1975, pp. 2493-2495]. Zbl0322.18010MR52 #8204
  11. [11] H. GARLAND and J. LEPOWSKY, (a) Lie Algebra Homology and the MacDonald-Kac Formulas (Invent. math., Vol. 34, 1976, pp. 37-76) ; (b) The MacDonald-Kac Formulas as a Consequence of the Euler-Poincaré Principle in Contributions to Algebra : A Collection of Papers Dedicated to Ellis Kolchin, BASS, CASSIDY and KOVACIC, Eds., Academic Press, New York, 1977, pp. 165-173. Zbl0366.17005MR54 #2744
  12. [12] H. GARLAND and M. S. RAGHUNATHAN, A Bruhat Decomposition for the Loop Space of a Compact Group : A New Approach to Results of Bott [Proc. Nat. Acad. Sc. (U.S.A.), Vol. 72, 1975, pp. 4716-4717]. Zbl0344.55009MR54 #5389
  13. [13] G. H. HARDY, Ramanujan, Cambridge Univ. Press, London, 1940, Reprinted by Chelsea, New York. JFM67.0002.09
  14. [14] G. HOCHSCHILD, Relative Homological Algebra (Trans. Amer. Math. Soc., Vol. 82, 1956, pp. 246-269). Zbl0070.26903MR18,278a
  15. [15] V. G. KAC, (a) Simple Irreducible Graded Lie Algebras of Finite Growth (in Russian) (Izv. Akad. Nauk S.S.S.R., Vol. 32, 1968, pp. 1323-1367), English translation : Math. U.S.S.R.-Izvestija, Vol. 2, 1968, pp. 1271-1311) ; (b) Automorphisms of Finite Order of Semisimple Lie algebras (in Russian) (Funkt. Anal. i Ego Prilozheniya, Vol. 3, 1969, pp. 94-96), English translation : Funct. Anal. and Appl., Vol. 3, 1969, pp. 252-254) ; (c) Infinite-Dimensional Lie algebras and Dedekind's ƞ-function (in Russian) (Funkt. Anal. i Ego Prilozheniya, Vol. 8, 1974, pp. 77-78), English translation : Funct. Anal. and Appl., Vol. 8, 1974, pp. 68-70) ; (d) Infinite-dimensional Algebras, Dedekind ƞ-Function, Classical Möbius Function and the very Strange Formula (Adv. in Math., Vol. 30, 1978, pp. 85-136). MR41 #4590
  16. [16] B. KOSTANT, (a) The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group (Amer. J. Math., Vol. 81, 1959, pp. 973-1032) ; (b) Lie Algebra Cohomology and the Generalized Borel-Weil Theorem (Ann. of Math., Vol. 74, 1961, pp. 329-387) ; (c) Lie Algebra Cohomology and Generalized Schubert Cells (Ann. of Math., Vol. 77, 1963, pp. 72-144) ; (d) On MacDonald's ƞ-Function Formula, the Laplacian and Generalized Exponents (Adv. in Math., Vol. 20, 1976, pp. 179-212). MR22 #5693
  17. [17] J. LEPOWSKY, (a) Generalized Verma Modules, the Cartan-Helgason Theorem and the Harish-Chandra Homomorphism (J. Algebra, Vol. 49, 1977, pp. 470-495) ; (b) Minimal K-Types for Certain Representations of Real Semisimple Groups (J. Algebra, Vol. 51, 1978, pp. 173-210) ; (c) MacDonald-type Identities (Adv. in Math., Vol. 27, 1978, pp. 230-234) ; (d) Application of the Numerator Formula to k-Rowed Plane Partitions (Adv. in Math., to appear) ; (e) Lie Algebras and Combinatorics (Proc. International Congress of Mathematicians, Helsinki, 1978, to appear). MR57 #3312
  18. [18] J. LEPOWSKY and G. W. MCCOLLUM, On the Determination of Irreducible Modules by Restriction to a Subalgebra (Trans. Amer. Math. Soc., Vol. 176, 1973, pp. 45-57). Zbl0266.17014MR48 #2201
  19. [19] J. LEPOWSKY and S. MILNE, Lie Algebraic Approaches to Classical Partition Identities (Adv. in Math., Vol. 29, 1978, pp. 15-59). Zbl0384.10008MR82f:17005
  20. [20] J. LEPOWSKY and R. L. WILSON, Construction of the Affine Lie Algebra A1(1) (Comm. Math. Phys., Vol. 62, 1978, pp. 43-53). Zbl0388.17006MR58 #28089
  21. [21] I. G. MACDONALD, Affine Root Systems and Dedekind's ƞ-Function, (Invent. math., Vol. 15, 1972, pp. 91-143). Zbl0244.17005MR50 #9996
  22. [22] R. V. MOODY, (a) A New Class of Lie Algebras (J. Algebra, Vol. 10, 1968, pp. 211-230) ; (b) Euclidean Lie Algebras (Can. J. Math., Vol. 21, 1969, pp. 1432-1454) ; (c) MacDonald Identities and Euclidean Lie Algebras (Proc. Amer. Math. Soc., Vol. 48, 1975, pp. 43-52). Zbl0315.17003MR37 #5261
  23. [23] K. R. PARTHASARATHY, R. RANGA RAO and V. S. VARADARAJAN, Representations of Complex Semi-Simple Lie Groups and Lie Algebras (Ann. of Math., Vol. 85, 1967, pp. 383-429). Zbl0177.18004MR37 #1526
  24. [24] H. RADEMACHER, Topics in Analytic Number Theory, Die Grundlehren der Mathematischen Wissenschaften, Vol. 169, Springer-Verlag, New York, 1973. Zbl0253.10002MR51 #358
  25. [25] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR35 #1007
  26. [26] L. CONLON, The Topology of Certain Spaces of Paths on a Compact Symmetric Space (Trans. Amer. Math. Soc., Vol. 112, 1964, pp. 228-248). Zbl0146.19602MR29 #631
  27. [27] F. J. DYSON, Missed Opportunities (Bull. Amer. Math. Soc., Vol. 78, 1972, pp. 635-653). Zbl0271.01005MR58 #25442
  28. [28] V. G. KAC, D. A. KAZHDAN, J. LEPOWSKY and R. L. WILSON, Realization of the Basic Representations of the Euclidean Lie Algebras, to appear. Zbl0476.17003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.