On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D

Galina Perelman[1]

  • [1] Centre de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau Cedex

Séminaire Équations aux dérivées partielles (1999-2000)

  • Volume: 1999-2000, page 1-14

How to cite

top

Perelman, Galina. "On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-14. <http://eudml.org/doc/11000>.

@article{Perelman1999-2000,
affiliation = {Centre de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau Cedex},
author = {Perelman, Galina},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {ground state solitary wave; initial perturbations; global existence; blow up phenomenon; singularity formation},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D},
url = {http://eudml.org/doc/11000},
volume = {1999-2000},
year = {1999-2000},
}

TY - JOUR
AU - Perelman, Galina
TI - On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 14
LA - eng
KW - ground state solitary wave; initial perturbations; global existence; blow up phenomenon; singularity formation
UR - http://eudml.org/doc/11000
ER -

References

top
  1. J.Bourgain, W.Wang, Construction of blow- up solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) XXV (1997), 197-215. Zbl1043.35137MR1655515
  2. V.S.Buslaev, G.S.Perelman, Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Peters. Math. J. 4 (1993), 1111-1143. Zbl0853.35112MR1199635
  3. T.Cazenave, F.B.Weissler, The structure of solutions to the pseudo-conformal invariant nonlinear Schrödinger equation, Proc. Royal Soc. Edinburgh 117A (1991), 251-273. Zbl0733.35094MR1103294
  4. R.Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger operators, J. Math. Phys. 8 (1977), 1794-1797. Zbl0372.35009MR460850
  5. J.Ginibre, G.Velo, On a class of nonlinear Schrödinger equations I, II, J. Func. Anal. 32 (1979), 1-71. Zbl0396.35029MR533219
  6. J.Ginibre, G.Velo, On a class of nonlinear Schrödinger equations III, Ann. Inst. H. Poincaré Phys. Thér. 28 (1978), 287-316. Zbl0397.35012MR498408
  7. M.Grillakis, Linearized instability for nonlinear Schrödinger and Klein - Gordon equations, Comm. Pure Appl. Math. (1988), 747-774. Zbl0632.70015MR948770
  8. N.Kosmatov, V.Schvets, V.Zakharov, Computer simulation of wave collapse in nonlinear Schrödinger equation,Phys. D 52 (1991), 16-35. Zbl0735.76085
  9. E.W.Laedke, R.Blaha, K.H.Spatschek, E.A.Kuznetsov, On the stability of collapse in the critical case, J. Math. Phys. 33(3) (1992), 967-973. Zbl0765.35053MR1149217
  10. B.J.LeMesurier, G.Papanicolau, C.Sulem, P.Sulem, Focusing and multi-focusing solutions of the nonlinear Schrödinger equation, Phys. D 31 (1988), 78-102. Zbl0694.35196MR947896
  11. B.J.LeMesurier, G.Papanicolau, C.Sulem, P.Sulem, Local structure of the self-focusing singularity of the nonlinear Schrödinger equation, Phys. D 32 (1988), 210-226. Zbl0694.35206MR969030
  12. V.M.Malkin, Dynamics of wave collapse in the critical case, Phys. Lett. A 151 (1990), 285-288. 
  13. F. Merle, Determination of blow- up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), 427-453. Zbl0808.35141MR1203233
  14. G.Perelman, On the formation of singularities in solutions of nonlinear Schrödinger equation with critical power nonlinearity, in preparation. Zbl1007.35087
  15. A.I.Smirnov, G.M.Fraiman, The interaction representation in the self-focusing theory, Phys. D 51 (1991), 2-15. Zbl0735.76092MR1131136
  16. A.Soffer and M.I.Weinstein, Multichannel nonlinear scattering theory for nonintegrable equations I, Comm. Math. Phys. 133 (1990), 119-146. Zbl0721.35082MR1071238
  17. A.Soffer and M.I.Weinstein, Multichannel nonlinear scattering theory for nonintegrable equations II, J. Diff. Eq. 98 (1992), 376-390. Zbl0795.35073MR1170476
  18. C.Sulem, P.Sulem, Focusing nonlinear Schrödinger equation and wave-packet collapse, Nonlin. Anal., Theory, Meth. & Appl. 30(2) (1997), 833-844. Zbl0886.35140MR1487664
  19. M.I.Weinstein, Modulation stability of ground states of nonlinear Schrödinger equation, SIAM J. Math. Anal. 16 (1985), 472-491. Zbl0583.35028MR783974
  20. M.I.Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math. 39 (1986), 51-68. Zbl0594.35005MR820338
  21. M.I.Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576. Zbl0527.35023MR691044
  22. M.I.Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11(5) (1986), 545-565. Zbl0596.35022MR829596
  23. M.I.Weinstein, Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities, J. Diff. Eq. 69 (1987), 192-203. Zbl0636.35015MR899159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.