Spectral and scattering theory for symbolic potentials of order zero
Andrew Hassell; Richard Melrose; András Vasy
Séminaire Équations aux dérivées partielles (2000-2001)
- Volume: 2000-2001, page 1-19
Access Full Article
topHow to cite
topReferences
top- Shmuel Agmon, Jaime Cruz, and Ira Herbst, Generalized Fourier transform for Schrödinger operators with potentials of order zero, J. Funct. Anal. 167 (1999), 345–369. Zbl0937.35033MR1716200
- J. Brüning and V.W. Guillemin (Editors), Fourier integral operators, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1994. Zbl0791.47043MR1287873
- J.J. Duistermaat and L. Hörmander, Fourier integral operators, II, Acta Math. 128 (1972), 183–269. Zbl0232.47055MR388464
- V.W. Guillemin and D. Schaeffer, On a certain class of Fuchsian partial differential equations., Duke Math. J., 4 (1977), 157–199. Zbl0356.35080MR430499
- Ira Herbst and Erik Skibsted, Quantum scattering for homogeneous of degree zero potentials: Absence of channels at local maxima and saddle points, Tech. report, Center for Mathematical Physics and Stochastics, 1999. Zbl1141.81029
- Ira W. Herbst, Spectral and scattering theory fo Schrödinger operators with potentials independent of , Amer. J. Math. 113 (1991), 509–565. Zbl0732.35063MR1109349
- L. Hörmander, Fourier integral operators, I, Acta Math. 127 (1971), 79–183, See also [2]. Zbl0212.46601MR388463
- —, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359–443. Zbl0388.47032
- R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (M. Ikawa, ed.), Marcel Dekker, 1994, pp. 85–130. Zbl0837.35107MR1291640
- —, Fibrations, compactifications and algebras of pseudodifferential operators, Partial Differential Equations and Mathematical Physics. The Danish-Swedish Analysis Seminar, 1995 (Lars Hörmander and Anders Melin, eds.), Birkhäuser, 1996, pp. 246–261. Zbl0853.35142MR1380979
- R.B. Melrose and M. Zworski, Scattering metrics and geodesic flow at infinity, Invent. Math. 124 (1996), 389–436. Zbl0855.58058MR1369423
- Richard B. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math. 44 (1984/85), 134–182. MR 87e:58199. Zbl0599.35139MR801291
- M.A. Shubin, Pseudodifferential operators on , Sov. Math. Dokl. 12 (1971), 147-151. Zbl0249.47043