Spectral and scattering theory for symbolic potentials of order zero

Andrew Hassell; Richard Melrose; András Vasy

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-19

How to cite

top

Hassell, Andrew, Melrose, Richard, and Vasy, András. "Spectral and scattering theory for symbolic potentials of order zero." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-19. <http://eudml.org/doc/11009>.

@article{Hassell2000-2001,
author = {Hassell, Andrew, Melrose, Richard, Vasy, András},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Schrödinger operator; generalized eigenfunctions; scattering matrix; scattering metric; Fourier integral operator},
language = {eng},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Spectral and scattering theory for symbolic potentials of order zero},
url = {http://eudml.org/doc/11009},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Hassell, Andrew
AU - Melrose, Richard
AU - Vasy, András
TI - Spectral and scattering theory for symbolic potentials of order zero
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 19
LA - eng
KW - Schrödinger operator; generalized eigenfunctions; scattering matrix; scattering metric; Fourier integral operator
UR - http://eudml.org/doc/11009
ER -

References

top
  1. Shmuel Agmon, Jaime Cruz, and Ira Herbst, Generalized Fourier transform for Schrödinger operators with potentials of order zero, J. Funct. Anal. 167 (1999), 345–369. Zbl0937.35033MR1716200
  2. J. Brüning and V.W. Guillemin (Editors), Fourier integral operators, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1994. Zbl0791.47043MR1287873
  3. J.J. Duistermaat and L. Hörmander, Fourier integral operators, II, Acta Math. 128 (1972), 183–269. Zbl0232.47055MR388464
  4. V.W. Guillemin and D. Schaeffer, On a certain class of Fuchsian partial differential equations., Duke Math. J., 4 (1977), 157–199. Zbl0356.35080MR430499
  5. Ira Herbst and Erik Skibsted, Quantum scattering for homogeneous of degree zero potentials: Absence of channels at local maxima and saddle points, Tech. report, Center for Mathematical Physics and Stochastics, 1999. Zbl1141.81029
  6. Ira W. Herbst, Spectral and scattering theory fo Schrödinger operators with potentials independent of | x | , Amer. J. Math. 113 (1991), 509–565. Zbl0732.35063MR1109349
  7. L. Hörmander, Fourier integral operators, I, Acta Math. 127 (1971), 79–183, See also [2]. Zbl0212.46601MR388463
  8. —, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359–443. Zbl0388.47032
  9. R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (M. Ikawa, ed.), Marcel Dekker, 1994, pp. 85–130. Zbl0837.35107MR1291640
  10. —, Fibrations, compactifications and algebras of pseudodifferential operators, Partial Differential Equations and Mathematical Physics. The Danish-Swedish Analysis Seminar, 1995 (Lars Hörmander and Anders Melin, eds.), Birkhäuser, 1996, pp. 246–261. Zbl0853.35142MR1380979
  11. R.B. Melrose and M. Zworski, Scattering metrics and geodesic flow at infinity, Invent. Math. 124 (1996), 389–436. Zbl0855.58058MR1369423
  12. Richard B. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math. 44 (1984/85), 134–182. MR 87e:58199. Zbl0599.35139MR801291
  13. M.A. Shubin, Pseudodifferential operators on n , Sov. Math. Dokl. 12 (1971), 147-151. Zbl0249.47043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.