Propagation of singularities for the wave equation on manifolds with corners

András Vasy[1]

  • [1] Department of Mathematics, MIT and Northwestern University

Séminaire Équations aux dérivées partielles (2004-2005)

  • Volume: 2004-2005, page 1-16

Abstract

top
In this talk we describe the propagation of 𝒞 and Sobolev singularities for the wave equation on 𝒞 manifolds with corners M equipped with a Riemannian metric g . That is, for X = M × t , P = D t 2 - Δ M , and u H loc 1 ( X ) solving P u = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WF b ( u ) is a union of maximally extended generalized broken bicharacteristics. This result is a 𝒞 counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary, [7]. Our methods rely on b-microlocal positive commutator estimates, thus providing a new proof for the propagation of singularities at hyperbolic points even if M has a smooth boundary (and no corners).These notes are a summary of [17], where the detailed proofs appear.

How to cite

top

Vasy, András. "Propagation of singularities for the wave equation on manifolds with corners." Séminaire Équations aux dérivées partielles 2004-2005 (2004-2005): 1-16. <http://eudml.org/doc/11110>.

@article{Vasy2004-2005,
abstract = {In this talk we describe the propagation of $\{\mathcal\{C\}\}^\{\infty \}$ and Sobolev singularities for the wave equation on $\{\mathcal\{C\}\}^\{\infty \}$ manifolds with corners $M$ equipped with a Riemannian metric $g$. That is, for $X=M\times \mathbb\{R\}_t$, $P=D_t^2-\Delta _M$, and $u\in H^1_\{\{\text\{loc\}\}\}(X)$ solving $Pu=0$ with homogeneous Dirichlet or Neumann boundary conditions, we show that $\operatorname\{WF\}_\{\{\text\{b\}\}\}(u)$ is a union of maximally extended generalized broken bicharacteristics. This result is a $\{\mathcal\{C\}\}^\{\infty \}$ counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary, [7]. Our methods rely on b-microlocal positive commutator estimates, thus providing a new proof for the propagation of singularities at hyperbolic points even if $M$ has a smooth boundary (and no corners).These notes are a summary of [17], where the detailed proofs appear.},
affiliation = {Department of Mathematics, MIT and Northwestern University},
author = {Vasy, András},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Propagation of singularities for the wave equation on manifolds with corners},
url = {http://eudml.org/doc/11110},
volume = {2004-2005},
year = {2004-2005},
}

TY - JOUR
AU - Vasy, András
TI - Propagation of singularities for the wave equation on manifolds with corners
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2004-2005
SP - 1
EP - 16
AB - In this talk we describe the propagation of ${\mathcal{C}}^{\infty }$ and Sobolev singularities for the wave equation on ${\mathcal{C}}^{\infty }$ manifolds with corners $M$ equipped with a Riemannian metric $g$. That is, for $X=M\times \mathbb{R}_t$, $P=D_t^2-\Delta _M$, and $u\in H^1_{{\text{loc}}}(X)$ solving $Pu=0$ with homogeneous Dirichlet or Neumann boundary conditions, we show that $\operatorname{WF}_{{\text{b}}}(u)$ is a union of maximally extended generalized broken bicharacteristics. This result is a ${\mathcal{C}}^{\infty }$ counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary, [7]. Our methods rely on b-microlocal positive commutator estimates, thus providing a new proof for the propagation of singularities at hyperbolic points even if $M$ has a smooth boundary (and no corners).These notes are a summary of [17], where the detailed proofs appear.
LA - fre
UR - http://eudml.org/doc/11110
ER -

References

top
  1. J. Cheeger and M. Taylor. Diffraction by conical singularities, I, II. Comm. Pure Applied Math., 35 :275–331, 487–529, 1982. Zbl0536.58032
  2. J. J. Duistermaat and L. Hörmander. Fourier integral operators, II. Acta Mathematica, 128 :183–269, 1972. Zbl0232.47055MR388464
  3. A. Hassell, R. B. Melrose, and A. Vasy. Scattering for symbolic potentials of order zero and microlocal propagation near radial points. Preprint, 2005. Zbl1152.35454
  4. A. Hassell, R. B. Melrose, and A. Vasy. Spectral and scattering theory for symbolic potentials of order zero. In Séminaire : Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XIII, 21. École Polytech., Palaiseau, 2001. Zbl1063.35126MR1860685
  5. L. Hörmander. Fourier integral operators, I. Acta Mathematica, 127 :79–183, 1971. Zbl0212.46601MR388463
  6. L. Hörmander. The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag, 1983. Zbl0521.35002
  7. G. Lebeau. Propagation des ondes dans les variétés à coins. Ann. Scient. Éc. Norm. Sup., 30 :429–497, 1997. Zbl0891.35072MR1456242
  8. R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math, 31 :593–617, 1978. Zbl0368.35020MR492794
  9. R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. II. Comm. Pure Appl. Math, 35 :129–168, 1982. Zbl0546.35083MR644020
  10. R. B. Melrose, A. Vasy, and J. Wunsch. Propagation of singularities for the wave equation on manifolds with edges. In preparation. Zbl1147.58029
  11. R. B. Melrose and J. Wunsch. Propagation of singularities for the wave equation on conic manifolds. Invent. Math., 156(2) :235–299, 2004. Zbl1088.58011MR2052609
  12. R. B. Melrose. Transformation of boundary problems. Acta Math., 147(3-4) :149–236, 1981. Zbl0492.58023MR639039
  13. R. B. Melrose and P. Piazza. Analytic K -theory on manifolds with corners. Adv. Math., 92(1) :1–26, 1992. Zbl0761.55002MR1153932
  14. M. Mitrea, M. Taylor, and A. Vasy. Lipschitz domains, domains with corners and the Hodge Laplacian. Preprint, 2004. Zbl1082.31007MR2182300
  15. A. Vasy. Propagation of singularities in many-body scattering. Ann. Sci. École Norm. Sup. (4), 34 :313–402, 2001. Zbl0987.81114MR1839579
  16. A. Vasy. Propagation of singularities in many-body scattering in the presence of bound states. J. Func. Anal., 184 :177–272, 2001. Zbl1085.35010MR1847427
  17. A. Vasy. Propagation of singularities for the wave equation on manifolds with corners. Preprint, 2004. Zbl1266.58013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.