Sur les Champs de vecteurs peu réguliers

Ferruccio Colombini[1]; Nicolas Lerner[2]

  • [1] Dipartimento di Matematica, Università di Pisa, Via F.Buonarroti 2, 56127 Pisa, Italia
  • [2] Université de Rennes 1, Irmar, Campus de Beaulieu, 35042 Rennes cedex, France

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-15

How to cite

top

Colombini, Ferruccio, and Lerner, Nicolas. "Sur les Champs de vecteurs peu réguliers." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-15. <http://eudml.org/doc/11010>.

@article{Colombini2000-2001,
affiliation = {Dipartimento di Matematica, Università di Pisa, Via F.Buonarroti 2, 56127 Pisa, Italia; Université de Rennes 1, Irmar, Campus de Beaulieu, 35042 Rennes cedex, France},
author = {Colombini, Ferruccio, Lerner, Nicolas},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Vector fields; Transport equation; Weak solutions; $BV$},
language = {fre},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur les Champs de vecteurs peu réguliers},
url = {http://eudml.org/doc/11010},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Colombini, Ferruccio
AU - Lerner, Nicolas
TI - Sur les Champs de vecteurs peu réguliers
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 15
LA - fre
KW - Vector fields; Transport equation; Weak solutions; $BV$
UR - http://eudml.org/doc/11010
ER -

References

top
  1. M Aizenman, On vector fields as generators of flows : a counterexample to Nelson’s conjecture, Ann. Math. 107 (1978), (2), 287-296 Zbl0394.28012
  2. H Bahouri, J.-Y Chemin, Équations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides., Arch. Rational Mech. Anal. 127 (1994), 159-181 Zbl0821.76012MR1288809
  3. F Bouchut, L Desvillettes, On two-dimensional Hamiltonian transport equations with continuous coefficients, Diff. and Int. Eq. 14 (2001), 1015-1024 Zbl1028.35042MR1827101
  4. F Bouchut, F James, One dimensional transport equations with discontinuous coefficients, Non linear analysis 32 (1998), 891-933 Zbl0989.35130MR1618393
  5. F Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. for Ration. Mech. and Anal. (à paraître) Zbl0979.35032MR1822415
  6. J.-Y Chemin, N Lerner, Flot de champ de vecteurs non lipschitziens et équations de Navier-Stokes, J.Differ. Eq. 121 (1995), 314-328 Zbl0878.35089MR1354312
  7. F Colombini, N Lerner, Hyperbolic equations with non Lipschitz coefficients, Duke Math.J. 77 (1995), 657-698 Zbl0840.35067MR1324638
  8. F Colombini, N Lerner, Uniqueness of continuous solutions for B V vector fields, Duke Math.J.(à paraître) Zbl1017.35029MR1882138
  9. B Desjardins, A few remarks on ordinary differential equations, Comm.PDE 21 (1996), 1667-1703 Zbl0899.35022MR1421208
  10. B Desjardins, Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations, Diff. & Integ. Equ. 10 (1995), 3, 577-586 Zbl0902.76028MR1744862
  11. B Desjardins, Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Diff. & Integ. Equ. 10 (1995), 3, 587-598 Zbl0902.76027MR1744863
  12. R.J. DiPerna, P.L Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547 Zbl0696.34049MR1022305
  13. H Federer, Geometric measure theory, Grund. der math. Wiss. 153 (1969), Springer-Verlag Zbl0176.00801
  14. T.M Flett, Differential analysis, (1980), Cambridge Univ. Press Zbl0442.34002MR561908
  15. N Bourbaki, Fonctions d’une variable réelle, (1976), C.C.L.S., Paris Zbl0346.26003
  16. L Hörmander, The Analysis of Linear PDO, Grund. der math. Wiss. 256-257-274-275 (1983-85), Springer-Verlag 
  17. L Hörmander, Lectures on nonlinear hyperbolic differential equations, Mathématiques et applications 26 (1996), Springer-Verlag Zbl0881.35001MR1466700
  18. Y Hu, N Lerner, On the existence and uniqueness of solutions to stochastic equations in infinite dimensions with integral-Lipschitz coefficients, preprint 00-39, Irmar (2000) Zbl1037.60060MR1967224
  19. P.L Lions, Sur les équations différentielles ordinaires et les équations de transport, C.R. Acad.Sc. Paris, Série I, 326 (1998), 833-838 Zbl0919.34028MR1648524
  20. G Petrova, B Popov, Linear transport equations with discontinuous coefficients, Comm.PDE 24 (1999), 1849-1873 Zbl0992.35104MR1708110
  21. F Poupaud, M Rascle, Measure solutions to the linear multidimensional transport equation with non-smooth coefficients, Comm.PDE 22 (1997), 337-358 Zbl0882.35026MR1434148
  22. X.Saint Raymond, L’unicité pour les problèmes de Cauchy linéaires du premier ordre, Enseign. Math. no. 1-2, (2), 32 (1986), 1-55 Zbl0625.35009
  23. F Treves, Topological vector spaces, distributions and kernels, Pure & Appl. Math.Ser. (1967), Academic Press Zbl0171.10402MR225131
  24. A.I Vol’pert, The space B V and quasi-linear equations, Math.USSR Sbornik 2 (1967), 225-267 Zbl0168.07402
  25. W.P Ziemer, Weakly differentiable functions, Graduate texts in mathematics 120 (1989), Springer-Verlag Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.