Harmonic analysis on fractal spaces

Martin Barlow

Séminaire Bourbaki (1991-1992)

  • Volume: 34, page 345-368
  • ISSN: 0303-1179

How to cite


Barlow, Martin. "Harmonic analysis on fractal spaces." Séminaire Bourbaki 34 (1991-1992): 345-368. <http://eudml.org/doc/110158>.

author = {Barlow, Martin},
journal = {Séminaire Bourbaki},
keywords = {harmonic analysis; fractal space; heat equations},
language = {eng},
pages = {345-368},
publisher = {Société Mathématique de France},
title = {Harmonic analysis on fractal spaces},
url = {http://eudml.org/doc/110158},
volume = {34},
year = {1991-1992},

AU - Barlow, Martin
TI - Harmonic analysis on fractal spaces
JO - Séminaire Bourbaki
PY - 1991-1992
PB - Société Mathématique de France
VL - 34
SP - 345
EP - 368
LA - eng
KW - harmonic analysis; fractal space; heat equations
UR - http://eudml.org/doc/110158
ER -


  1. [B1] M.T. Barlow: Random walks, electrical resistance and nested fractals. To appear in Asymptotic Problems in Probability Theory, ed. K.D. Elworthy, N. Ikeda, Pitman. Zbl0791.60097MR1354153
  2. [BB1] M.T. Barlow and R.F. Bass: The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. H. Poincaré25 (1989) 225-257. Zbl0691.60070MR1023950
  3. [BB2] M.T. Barlow and R.F. Bass: On the resistance of the Sierpinski carpet. Proc. R. Soc. London A.431 (1990) 345-360. Zbl0729.60108MR1080496
  4. [BB3] M.T. Barlow and R.F. Bass: Transition densities for Brownian motion on the Sierpinski carpet. Probab. Th. Rel. Fields91 (1992) 307-330. Zbl0739.60071MR1151799
  5. [BP] M.T. Barlow and E.A. Perkins: Brownian motion on the Sierpinski gasket. Probab. Th. Rel. Fields79 (1988) 543-623. Zbl0635.60090MR966175
  6. [CKS] E.A. Carlen, S. Kusuoka and D.W. Stroock: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Sup no. 2 (1987) 245-287. Zbl0634.60066MR898496
  7. [C] A.K. Chandra, P. Raghaven, W.L. Ruzzo, R. Smolensky, P. Tiwari: The electrical resistance of a graph captures its commute and cover times. Proceedings of the 21st ACM Symposium on theory of computing, 1989. Zbl0905.60049
  8. [Ch] I. Chavel: Eigenvalues in Riemannian Geometry. Academic Press, 1984. Zbl0551.53001MR768584
  9. [F1] M. Fukushima: Dirichlet forms and Markov processes, North Holland1980. Zbl0422.31007MR569058
  10. [F2] M. Fukushima: Dirichlet forms, diffusion processes, and spectral dimensions for nested fractals. To appear in "Ideas and methods in stochastic analysis, stochastics and applications" , ed. S Albeverio et. al., Cambridge Univ. Press., Cambridge. Zbl0764.60081MR1190496
  11. [FS] M. Fukushima and T. Shima: On a spectral analysis for the Sierpinski gasket. To appear J. of Potential Analysis. Zbl1081.31501MR1245223
  12. [G] S. Goldstein: Random walks and diffusion on fractals. In: Kesten, H. (ed.) Percolation theory and ergodic theory of infinite particle systems (IMA Math. Appl., vol.8.) Springer, New York, 1987, pp.121- 129. Zbl0621.60073MR894545
  13. [HHW] K. Hattori, T. Hattori and H. Watanabe: Gaussian field theories and the spectral dimensions. Prog. Th. Phys. Supp. No. 92 (1987) 108-143. 
  14. [Kig1] J. Kigami: A harmonic calculus on the Sierpinski space. Japan J. Appl. Math.6 (1989) 259-290. Zbl0686.31003MR1001286
  15. [Kig2] J. Kigami: A harmonic calculus for p.c.f. self-similar sets. To appear Trans. A.M.S. Zbl0773.31009MR1076617
  16. [Kum] T. Kumagai: Estimates of the transition densities for Brownian motion on nested fractals. Preprint 1991. MR1227032
  17. [K1] S. Kusuoka: A diffusion process on a fractal. In: Ito, K., N. Ikeda, N. (ed.) Symposium on Probabilistic Methods in Mathematical Physics, Taniguchi, Katata. Academic Press, Amsterdam, 1987, pp.251-274 Zbl0645.60081MR933827
  18. [K2] S. Kusuoka: Dirichlet forms on fractals and products of random matrices. Publ. RIMS Kyoto Univ., 25 (1989) 659-680. Zbl0694.60071MR1025071
  19. [KZ] S. Kusuoka and X.Y. Zhou: Dirichlet form on fractals: Poincaré constant and resistance. Probab. Th. Rel. Fields93, (1992) 169- 186. Zbl0767.60076MR1176724
  20. [L] T. Lindstrøm: Brownian motion on nested fractals. Mem. A.M.S.420, 1990. Zbl0688.60065MR988082
  21. [O] H. Osada: Isoperimetric dimension and estimates of heat kernels of pre-Sierpinski carpets. Probab. Th. Rel. Fields86 (1990) 469-490. Zbl0685.60081MR1074740
  22. [RT] R. Rammal and G. Toulouse: Random walks on fractal structures and percolation' clusters, J. Physique Lettres44 (1983) L13- L22. 
  23. [S] T. Shima: On eigenvalue problems for the random walk on the Sierpinski pre-gaskets. Japan J. Appl. Ind. Math., 8 (1991) 127-142. Zbl0715.60088MR1093832
  24. [V] N.Th. Varopoulos: Isoperimetric inequalities and Markov chains. J. Funct. Anal.63 (1985) 215-239. Zbl0573.60059MR803093

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.