Harmonic analysis on fractal spaces
Séminaire Bourbaki (1991-1992)
- Volume: 34, page 345-368
- ISSN: 0303-1179
Access Full Article
topHow to cite
topBarlow, Martin. "Harmonic analysis on fractal spaces." Séminaire Bourbaki 34 (1991-1992): 345-368. <http://eudml.org/doc/110158>.
@article{Barlow1991-1992,
author = {Barlow, Martin},
journal = {Séminaire Bourbaki},
keywords = {harmonic analysis; fractal space; heat equations},
language = {eng},
pages = {345-368},
publisher = {Société Mathématique de France},
title = {Harmonic analysis on fractal spaces},
url = {http://eudml.org/doc/110158},
volume = {34},
year = {1991-1992},
}
TY - JOUR
AU - Barlow, Martin
TI - Harmonic analysis on fractal spaces
JO - Séminaire Bourbaki
PY - 1991-1992
PB - Société Mathématique de France
VL - 34
SP - 345
EP - 368
LA - eng
KW - harmonic analysis; fractal space; heat equations
UR - http://eudml.org/doc/110158
ER -
References
top- [B1] M.T. Barlow: Random walks, electrical resistance and nested fractals. To appear in Asymptotic Problems in Probability Theory, ed. K.D. Elworthy, N. Ikeda, Pitman. Zbl0791.60097MR1354153
- [BB1] M.T. Barlow and R.F. Bass: The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. H. Poincaré25 (1989) 225-257. Zbl0691.60070MR1023950
- [BB2] M.T. Barlow and R.F. Bass: On the resistance of the Sierpinski carpet. Proc. R. Soc. London A.431 (1990) 345-360. Zbl0729.60108MR1080496
- [BB3] M.T. Barlow and R.F. Bass: Transition densities for Brownian motion on the Sierpinski carpet. Probab. Th. Rel. Fields91 (1992) 307-330. Zbl0739.60071MR1151799
- [BP] M.T. Barlow and E.A. Perkins: Brownian motion on the Sierpinski gasket. Probab. Th. Rel. Fields79 (1988) 543-623. Zbl0635.60090MR966175
- [CKS] E.A. Carlen, S. Kusuoka and D.W. Stroock: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Sup no. 2 (1987) 245-287. Zbl0634.60066MR898496
- [C] A.K. Chandra, P. Raghaven, W.L. Ruzzo, R. Smolensky, P. Tiwari: The electrical resistance of a graph captures its commute and cover times. Proceedings of the 21st ACM Symposium on theory of computing, 1989. Zbl0905.60049
- [Ch] I. Chavel: Eigenvalues in Riemannian Geometry. Academic Press, 1984. Zbl0551.53001MR768584
- [F1] M. Fukushima: Dirichlet forms and Markov processes, North Holland1980. Zbl0422.31007MR569058
- [F2] M. Fukushima: Dirichlet forms, diffusion processes, and spectral dimensions for nested fractals. To appear in "Ideas and methods in stochastic analysis, stochastics and applications" , ed. S Albeverio et. al., Cambridge Univ. Press., Cambridge. Zbl0764.60081MR1190496
- [FS] M. Fukushima and T. Shima: On a spectral analysis for the Sierpinski gasket. To appear J. of Potential Analysis. Zbl1081.31501MR1245223
- [G] S. Goldstein: Random walks and diffusion on fractals. In: Kesten, H. (ed.) Percolation theory and ergodic theory of infinite particle systems (IMA Math. Appl., vol.8.) Springer, New York, 1987, pp.121- 129. Zbl0621.60073MR894545
- [HHW] K. Hattori, T. Hattori and H. Watanabe: Gaussian field theories and the spectral dimensions. Prog. Th. Phys. Supp. No. 92 (1987) 108-143.
- [Kig1] J. Kigami: A harmonic calculus on the Sierpinski space. Japan J. Appl. Math.6 (1989) 259-290. Zbl0686.31003MR1001286
- [Kig2] J. Kigami: A harmonic calculus for p.c.f. self-similar sets. To appear Trans. A.M.S. Zbl0773.31009MR1076617
- [Kum] T. Kumagai: Estimates of the transition densities for Brownian motion on nested fractals. Preprint 1991. MR1227032
- [K1] S. Kusuoka: A diffusion process on a fractal. In: Ito, K., N. Ikeda, N. (ed.) Symposium on Probabilistic Methods in Mathematical Physics, Taniguchi, Katata. Academic Press, Amsterdam, 1987, pp.251-274 Zbl0645.60081MR933827
- [K2] S. Kusuoka: Dirichlet forms on fractals and products of random matrices. Publ. RIMS Kyoto Univ., 25 (1989) 659-680. Zbl0694.60071MR1025071
- [KZ] S. Kusuoka and X.Y. Zhou: Dirichlet form on fractals: Poincaré constant and resistance. Probab. Th. Rel. Fields93, (1992) 169- 186. Zbl0767.60076MR1176724
- [L] T. Lindstrøm: Brownian motion on nested fractals. Mem. A.M.S.420, 1990. Zbl0688.60065MR988082
- [O] H. Osada: Isoperimetric dimension and estimates of heat kernels of pre-Sierpinski carpets. Probab. Th. Rel. Fields86 (1990) 469-490. Zbl0685.60081MR1074740
- [RT] R. Rammal and G. Toulouse: Random walks on fractal structures and percolation' clusters, J. Physique Lettres44 (1983) L13- L22.
- [S] T. Shima: On eigenvalue problems for the random walk on the Sierpinski pre-gaskets. Japan J. Appl. Ind. Math., 8 (1991) 127-142. Zbl0715.60088MR1093832
- [V] N.Th. Varopoulos: Isoperimetric inequalities and Markov chains. J. Funct. Anal.63 (1985) 215-239. Zbl0573.60059MR803093
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.