The construction of brownian motion on the Sierpinski carpet
Martin T. Barlow; Richard F. Bass
Annales de l'I.H.P. Probabilités et statistiques (1989)
- Volume: 25, Issue: 3, page 225-257
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBarlow, Martin T., and Bass, Richard F.. "The construction of brownian motion on the Sierpinski carpet." Annales de l'I.H.P. Probabilités et statistiques 25.3 (1989): 225-257. <http://eudml.org/doc/77350>.
@article{Barlow1989,
author = {Barlow, Martin T., Bass, Richard F.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian motion; Sierpinski carpet; finitely ramified fractal},
language = {eng},
number = {3},
pages = {225-257},
publisher = {Gauthier-Villars},
title = {The construction of brownian motion on the Sierpinski carpet},
url = {http://eudml.org/doc/77350},
volume = {25},
year = {1989},
}
TY - JOUR
AU - Barlow, Martin T.
AU - Bass, Richard F.
TI - The construction of brownian motion on the Sierpinski carpet
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1989
PB - Gauthier-Villars
VL - 25
IS - 3
SP - 225
EP - 257
LA - eng
KW - Brownian motion; Sierpinski carpet; finitely ramified fractal
UR - http://eudml.org/doc/77350
ER -
References
top- [1] M.T. Barlow and E. Perkins, Brownian Motion on the Sierpinski Gasket, Prob. Th. and related Fields, Vol. 79, 1988, pp. 543-623. Zbl0635.60090MR966175
- [2] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
- [3] R.M. Blumenthal, R.K. Getoor and H.P. Mckean Jr., Markov Processes with Identical Hitting Distributions, Ill. J. Math., Vol. 6, 1962, pp. 402-420, Vol. 7, 1963, pp. 540-542. Zbl0133.40903MR142157
- [4] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel: Théorie des Martingales, Hermann, Paris, 1980. Zbl0464.60001MR566768
- [5] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
- [6] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland/Kodansha, Tokyo, 1980. Zbl0422.31007MR569058
- [7] S. Goldstein, Random Walks and Diffusions on Fractals, I.M.A. vol. in Math & Applic., Percolation Theory and Ergodic Theory of Infinite Particle Systems, H. KESTEN Ed., 121-129. Springer, New York, 1987. Zbl0621.60073
- [8] H. Kesten, Subdiffusive Behavior of Random Walk on a Random Cluster, Ann. Inst. H.-Poincaré, Vol. 22, 1986, pp. 425-487. Zbl0632.60106MR871905
- [9] N.V. Krylov and M.V. Safonov, An Estimate of the Probability that a Diffusion Process hits a Set of Positive Measure, Soviet Math. Doklady, Vol. 20, 1979, pp. 253- 255. Zbl0459.60067
- [10] S. Kusuoka, A Diffusion Process on a Fractal, in Probabilistic Methods in Mathematical Physics, Taniguchi Symp., Katata, 1985, K. ITO, N. IKEDA Ed., pp. 251-274, Kinokuniya-North Holland, Amsterdam, 1987. Zbl0645.60081MR933827
- [11] B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982. Zbl0504.28001MR665254
- [12] J. Moser, On Harnack's Theorem for Elliptic Differential Equations, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 577-591. Zbl0111.09302MR159138
- [13] S.C. Port and C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978. Zbl0413.60067MR492329
- [14] R. Rammal and G. Toulouse, Random Walks on Fractal Structures and Percolation Clusters, J. Physique lettres, Vol. 44, 1983, pp. L13-L22.
- [15] W. Sierpinski, Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, C.R. Acad. Sci. Paris, T. 162, 1916, pp. 629-632. Zbl46.0295.02JFM46.0295.02
- [16] R. Wittmann, Natural Densities for Markov Transition Probabilities, Prob. Th. and related Fields, Vol. 73, 1986, pp. 1-10. Zbl0581.60057MR849062
Citations in EuDML Documents
top- M. T. Barlow, B. M. Hambly, Transition density estimates for brownian motion on scale irregular Sierpinski gaskets
- Martin Barlow, Harmonic analysis on fractal spaces
- C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar fractals
- Richard F. Bass, Moritz Kassmann, Takashi Kumagai, Symmetric jump processes : localization, heat kernels and convergence
- Umberto Mosco, Variational fractals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.