Démonstration «automatique» d'identités et fonctions hypergéométriques

Pierre Cartier

Séminaire Bourbaki (1991-1992)

  • Volume: 34, page 41-91
  • ISSN: 0303-1179

How to cite

top

Cartier, Pierre. "Démonstration «automatique» d'identités et fonctions hypergéométriques." Séminaire Bourbaki 34 (1991-1992): 41-91. <http://eudml.org/doc/110161>.

@article{Cartier1991-1992,
author = {Cartier, Pierre},
journal = {Séminaire Bourbaki},
keywords = {Doron Zeilberger},
language = {fre},
pages = {41-91},
publisher = {Société Mathématique de France},
title = {Démonstration «automatique» d'identités et fonctions hypergéométriques},
url = {http://eudml.org/doc/110161},
volume = {34},
year = {1991-1992},
}

TY - JOUR
AU - Cartier, Pierre
TI - Démonstration «automatique» d'identités et fonctions hypergéométriques
JO - Séminaire Bourbaki
PY - 1991-1992
PB - Société Mathématique de France
VL - 34
SP - 41
EP - 91
LA - fre
KW - Doron Zeilberger
UR - http://eudml.org/doc/110161
ER -

References

top
  1. [1] M. Abramowitz et I. Stegun, Handbook of Mathematical functions, Dover, New-York, 1965. 
  2. [2] A. Erdelyi (éditeur), Higher transcendental functions, 3 volumes, McGraw-Hill, New York, 1953. 
  3. [3] I. Gradshteyn et I.: Ryzhik, Table of integrals, series and products, Academic Press, New York, 1980. Zbl0918.65002
  4. [4] P. Appell et J. Kampé De Fériet, Fonctions hypergéométriques et hypersphériques, Gauthier-Villars, Paris, 1926. Zbl52.0361.13JFM52.0361.13
  5. [5] J.E. Rainville, Special functions, MacMillan, New York, 1960. Zbl0092.06503MR107725
  6. [6] L. Slater, Confluent hypergeometric functions, Cambridge University Press, Cambridge, 1960. Zbl0086.27502MR107026
  7. [7] E. Whittaker et G. Watson, Modern Analysis, Cambridge University Press, Cambridge, 1946. Zbl0108.26903
  8. [8] M. Aigner, Combinatorial theory, Springer, Berlin, 1979 (voir surtout le chapitre 3). Zbl0858.05001MR542445
  9. [9] G. Andrews, The theory of partitions, Addison-Wesley, Reading, 1976. Zbl0371.10001MR557013
  10. [10] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974. ¿ Zbl0283.05001MR460128
  11. [11] R. Graham, D. Knuth et O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 1989. Zbl0668.00003MR1397498
  12. [12] D. Knuth, The art of computer programming, 3 volumes, Addison-Wesley, Reading, 1968-1973. Zbl0191.18001MR378456
  13. [13] P. Macmahon, Combinatory analysis, 2 volumes, Chelsea, New York, 1960 (réimpression). Zbl0101.25102MR141605
  14. [14] J. Riordan, An introduction to combinatorial analysis, John Wiley, New York, 1958. Zbl0078.00805MR96594
  15. [15] G. Andrews, q-series : Their development and application in analysis, number theory, combinatorics, physics and computer algebra,CBMS Regional Conference Lecture Series, 66, Amer. Math. Soc., Providence, 1986. Zbl0594.33001MR858826
  16. [16] W. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935 (réimprimé par Stechert-Hafner, New York, 1964). Zbl0011.02303MR185155
  17. [17] H. Exton, q-hypergeometric functions and applications, Ellis Horwood/John Wiley, New York, 1983. Zbl0514.33001MR708496
  18. [18] N. Fine, Basic hypergeometric series and applications, Math. Surv.27, Amer. Math. Soc., Providence, 1988. Zbl0647.05004MR956465
  19. [19] G. Gasper et M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge, 1990. Zbl0695.33001MR1052153
  20. [20] E. Heine, Handbuch der Kugelfunktionen. Theorie und Anwendung, 2 volumes, Springer, 1898 (=Physica Verlag, Würzburg, 1961). Zbl0103.29304MR204726
  21. [21] L. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. Zbl0135.28101MR201688
  22. [1] D. Zeilberger, Sister Celine's technique and its generalizations, J. Math. Anal. Appl.85 (1982), 114-145. Zbl0485.05003MR647562
  23. [2] D. Zeilberger, A Holonomic systems approach to special functions identities, J. of Computational and Applied Math.32 (1990), 321-368. Zbl0738.33001MR1090884
  24. [3] D. Zeilberger, A Fast Algorithm for proving terminating hypergeometric identities, Discrete Math.80 (1990), 207-211. Zbl0701.05001MR1048463
  25. [4] D. Zeilberger. The method of creative telescoping, J. Symbolic Computation11 (1991). 195-204. Zbl0738.33002MR1103727
  26. [5] D. Zeilberger, Closed Form (pun intended !), to appear in : "Special volume in memory of Emil Grosswald", M. Knopp, ed., Contemporary Mathematics, AMS. Zbl0808.05010MR1210544
  27. [6] D. Zeilberger, Three recitations on Holonomic Systems and Hypergeometric Series, Proceedings of the Séminaire Lotharingien de combinatoire24, IRMA, Strasbourg, à paraître. Zbl0981.05514
  28. [7] D. Zeilberger, Plain (Lagrange interpolation) proofs of Fancy (representation theory) formulas, en préparation. 
  29. [8] S.B. Ekhad, Short proofs of two hypergeometric summation formulas of Karlsson, Proc. Amer. Math. Soc.107 (1989), 1143-1144. Zbl0688.33001MR1019759
  30. [9] S.B. Ekhad, A very short proof of Dixon's theorem, J. Comb. Theo., Series A54 (1990), 141-142. Zbl0707.05007MR1051787
  31. [10] S.B. Ekhad, A one-line proof o f the Habsieger-Zeilberger G2 constant term identity, J. Comput. Appl. Math.34 (1991), 133-134. Zbl0737.33010MR1095202
  32. [11] S.B. Ekhad, Short Proof Of A "Strange" Combinatorial Identity Conjectured by Gosper, Discrete Math. à paraître. Zbl0741.05004
  33. [12] S.B. Ekhad, A Short, Elementary and Easy. WZ proof of the Askey-Gasper inequality that was used by de Branges in his proof of the Bieberbach conjecture, à paraître. Zbl0780.33004
  34. [13] S.B. Ekhad and S. Tre, A purely verification proof of the first Rogers-Ramanujan identity, J. Comb. The. Ser. A54 (1990), 309-311. Zbl0702.05007MR1060003
  35. [14] S.B. Ekhad and D. Zeilberger, A 21st century proof of Dougall's hypergeometric sum identity, J. Math. Anal. Appl.147 (1990), 610- 611. Zbl0714.33002MR1050232
  36. [15] H.S. Wilf and D. Zeilberger, Towards computerized proofs of identities, Bulletin of the Amer. Math. Soc.23 (1990), 77-83. Zbl0718.05010MR1019401
  37. [16] H.S. Wilf and D. Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc.3 (1990), 147-158. Zbl0695.05004MR1007910
  38. [17] H.S. Wilf and D. Zeilberger, A general theory of multi-variate hypergeometric identities. en préparation. 
  39. [18] H.S. Wilf, 54 computer-generated proofs of binomial coefficient identities, à paraître. 
  40. [19] G. Almkvist et D. Zeilberger, The method of differentiating under the integral sign, Journ. Symb. Computation, 10 (1990), 571- 591. Zbl0717.33004MR1087980
  41. [20] G. Almkvist et D. Zeilberger, A MAPLE program that finds, and proves, recurrences and differential equations satisfied by hyperexponential definite integrals, SIGSAM Bulletin25 (1991),... 
  42. [21] D. Zeilberger, A MAPLE program for proving hypergeometric series, SIGSAM Bulletin25 (1991),... 
  43. [1] J. Bernstein, Modules over the ring of differential operators. A study of the fundamental solutions of equations with constant coefficients, Funk. Analisis, Akademia Nauk CCCR5 (2) (1971), 1-16. Zbl0233.47031MR290097
  44. [2] J. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funct. Anal. and Appl.6 (1972), 273- 285. Zbl0282.46038MR320735
  45. [3] J.-E. Björk, Rings of Differential Operators, North Holland, Amsterdam, 1979. Zbl0499.13009MR549189
  46. [4] A. Borel et al., Algebraic D-modules, Perspectives in Math.2, Academic Press, Boston, 1987. Zbl0642.32001MR882000
  47. [5] B. Buchberger, An algorithmic method in polynomial ideal theory, N.K. Bose ed. Recents trends in multidimensional systems theory, D. Reidel Publishing Corp., 1985. Zbl0587.13009MR835951
  48. [6] F. Ehlers, The Weyl Algebra, Chapitre V de [4], 173-205. 
  49. [7] A. Galligo, Some algorithmic questions on ideals of differential operators, Lect. Note in Comp. Sci.204 (1985), 413-421. Zbl0634.16001MR826576
  50. [8] R. Gosper, Decision procedure for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. USA75 (1978), 40-42. Zbl0384.40001MR485674
  51. [9] M. Kashiwara, B-functions and holonomic systems, Invent. Math.38 (1976), 33-53. Zbl0354.35082MR430304
  52. [10] M. Kashiwara, Vanishing cycles sheaves and holonomic systems of differential equations, SpringerLect. Notes in Math.1016 (1983), 134-142. Zbl0566.32022MR726425
  53. [11] B. Malgrange, L'involutivité des caractéristiques des systèmes différentiels et microdifférentiels, Sém. Bourbaki, exposé 522, 1977-1978 (Lect. Notes in Math.710, 277-289). Zbl0423.46033MR554227
  54. [12] R. Risch, The solution of the problem in integrating in finite terms, Bull. Amer. Math. Soc.76 (1970), 605-608. Zbl0196.06801MR269635
  55. [13] N. Takayama, Gröbner basis and the problem of contiguous relations, Japan Journ. Appl. Math.6 (1989), 147-160. Zbl0691.68032MR981518
  56. [14] N. Takayama, An algorithm for constructing the integral o f a module - an infinite dimensional analog of Gröbner basis, Proceedings of ISSAC'90, A.C.M. Press. 
  57. [15] N. Takayama, An approach to the zero recognition problem by Buchberger algorithm, Journ. Symb. Computation, Zbl0763.65007
  58. [1] K. Aomoto, A note on holonomic q-difference systems, Algebraic Analysis (in honor of M. Sato), M. Kashiwara and T. Kawai eds., Academic Press, (1988), 25-28. Zbl0674.33006MR992444
  59. [2] K. Aomoto, q-analogue of de Rham cohomology associated with Jackson integrals, Proc. Japan Acad.66 (1990), 161-164. Zbl0718.33011MR1078398
  60. [3] K. Aomoto, Finiteness of a cohomology associated with certain Jackson integrals, Tohoku J. Math.43 (1991), 75-101. Zbl0769.33016MR1088716
  61. [4] C. Sabbah, Systèmes holonomes d'équations aux q-différences, Pré-publication Centre de Math. Ecole Polytechnique, Palaiseau, 1991. 
  62. [1] P. Cartier et D. Foata, Problèmes combinatoires de commutation et réarrangements, Lect. Notes Math. vol. 85, Springer1969. Zbl0186.30101MR239978
  63. [2] R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque61 (1979), 11-13. Zbl0401.10049
  64. [3] A. van des Poorten, A proof that Euler missed... Apery's proof of the irrationality of ζ(3), Math. Intelligencer, 1 (1979), 195-203. Sur les conjectures de Macdonald : Zbl0409.10028
  65. [4] I.G. Macdonald, Affine root systems and Dedekind η-function, Invent. Math.15 (1972), 91-143. Zbl0244.17005
  66. [5] I.G. Macdonald, Some conjectures for root systems, SIAM Journ. Math. Anal.13 (1982), 988-1007. Zbl0498.17006MR674768
  67. [6] D. Zeilberger, Unified approach to Macdonald's root system conjectures, SIAM Journ. Math. Anal.19 (1988), 987-1013. Zbl0658.05005MR946656
  68. [7] F. Garvan et G. Bonnet, Macdonald's constant term conjectures for exceptional root systems, Bull. Amer. Math. Soc.24 (1991), 343-347. Zbl0737.33011MR1078471
  69. [8] A. Helversen-Pasotto, L'identité de Barnes pour les corps finis, C.R. Acad. Sci. Paris, Série A, 286 (1978), 297-300. Zbl0373.12009MR476707
  70. [9] J. Greene et D. Stanton, A character sum evaluation and Gaussian hypergeometric series, Journ. Number Theory, 23 (1986), 136-148. Zbl0588.10038MR840021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.